Ni Minghong, Elli Stefano, Naggi Annamaria, Guerrini Marco, Torri Giangiacomo, Petitou Maurice
Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, srl, via G. Colombo 81, 20133 Milano, Italy.
Molecules. 2016 Nov 23;21(11):1602. doi: 10.3390/molecules21111602.
Heparanase is the only known endoglycosidase able to cleave heparan sulfate. Roneparstat and necuparanib, heparanase inhibitors obtained from heparin and currently being tested in man as a potential drugs against cancer, contain in their structure glycol-split uronic acid moieties probably responsible for their strong inhibitory activity. We describe here the total chemical synthesis of the trisaccharide GlcNS6S-GlcA-1,6anGlcNS () and its glycol-split (gs) counterpart GlcNS6S-gsGlcA-1,6anGlcNS () from glucose. As expected, in a heparanase inhibition assay, compound is one order of magnitude more potent than . Using molecular modeling techniques we have created a 3D model of and that has been validated by NOESY NMR experiments. The pure synthetic oligosaccharides have allowed the first in depth study of the conformation of a glycol-split glucuronic acid. Introducing a glycol-split unit in the structure of increases the conformational flexibility and shortens the distance between the two glucosamine motives, thus promoting interaction with heparanase. However, comparing the relative activities of and roneparstat, we can conclude that the glycol-split motive is not the only determinant of the strong inhibitory effect of roneparstat.
乙酰肝素酶是唯一已知的能够切割硫酸乙酰肝素的内切糖苷酶。罗奈帕斯塔和奈古帕尼是从肝素中获得的乙酰肝素酶抑制剂,目前正在人体中作为潜在的抗癌药物进行测试,其结构中含有糖裂解的糖醛酸部分,这可能是它们具有强大抑制活性的原因。我们在此描述了从葡萄糖出发全化学合成三糖GlcNS6S-GlcA-1,6anGlcNS()及其糖裂解(gs)对应物GlcNS6S-gsGlcA-1,6anGlcNS()。正如预期的那样,在乙酰肝素酶抑制试验中,化合物的效力比高一个数量级。使用分子建模技术,我们创建了和的三维模型,该模型已通过NOESY NMR实验得到验证。纯合成寡糖使得首次对糖裂解葡糖醛酸的构象进行了深入研究。在的结构中引入糖裂解单元增加了构象灵活性,并缩短了两个葡糖胺基团之间的距离,从而促进了与乙酰肝素酶的相互作用。然而,比较和罗奈帕斯塔的相对活性,我们可以得出结论,糖裂解基团不是罗奈帕斯塔强大抑制作用的唯一决定因素。