Fruchtman Amir, Gómez-Bombarelli Rafael, Lovett Brendon W, Gauger Erik M
Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Phys Rev Lett. 2016 Nov 11;117(20):203603. doi: 10.1103/PhysRevLett.117.203603. Epub 2016 Nov 10.
Conventional photocells suffer a fundamental efficiency threshold imposed by the principle of detailed balance, reflecting the fact that good absorbers must necessarily also be fast emitters. This limitation can be overcome by "parking" the energy of an absorbed photon in a dark state which neither absorbs nor emits light. Here we argue that suitable dark states occur naturally as a consequence of the dipole-dipole interaction between two proximal optical dipoles for a wide range of realistic molecular dimers. We develop an intuitive model of a photocell comprising two light-absorbing molecules coupled to an idealized reaction center, showing asymmetric dimers are capable of providing a significant enhancement of light-to-current conversion under ambient conditions. We conclude by describing a road map for identifying suitable molecular dimers for demonstrating this effect by screening a very large set of possible candidate molecules.
传统光电池受到由细致平衡原理所施加的基本效率阈值的限制,这反映出良好的光吸收体必然也是快速的光发射体这一事实。通过将吸收光子的能量“存储”在既不吸收也不发射光的暗态中,可以克服这一限制。在此我们认为,对于广泛的实际分子二聚体而言,合适的暗态会自然地由于两个相邻光学偶极子之间的偶极 - 偶极相互作用而出现。我们构建了一个直观的光电池模型,该模型由两个与理想化反应中心耦合的光吸收分子组成,表明不对称二聚体在环境条件下能够显著提高光到电流的转换效率。我们通过描述一个路线图来结束本文,该路线图用于通过筛选大量可能的候选分子来识别适合展示这种效应的分子二聚体。