Suppr超能文献

PD-L1 表达在胃癌中的临床病理和预后意义:10 项研究、1901 例患者的荟萃分析。

The clinicopathological and prognostic significance of PD-L1 expression in gastric cancer: a meta-analysis of 10 studies with 1,901 patients.

机构信息

Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China.

Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China.

出版信息

Sci Rep. 2016 Nov 28;6:37933. doi: 10.1038/srep37933.

Abstract

The prognostic value of programmed death-ligand 1 (PD-L1) in gastric cancer (GC) remains controversial. To clarify this problem, we performed a meta-analysis of research studies identified in the PubMed, EMBASE and the Cochrane Library databases. A total of 1,901 patients in 10 studies were enrolled in this meta-analysis, and the pooled hazard ratio (HR) of 1.64 (95% CI 1.11 to 2.43; P = 0.01) indicated that PD-L1 expression is associated with a shorter overall survival (OS). The pooled odds ratios (ORs) indicated that PD-L1 expression was associated with tumour size (OR = 1.87, 95% CI 1.25 to 2.78; P = 0.002) and lymph node status (OR = 2.17, 95% CI 1.04 to 4.52; P = 0.04). However, PD-L1 had no correlation with gender, age, cancer location, differentiation, depth of invasion, and tumour stage. This meta-analysis indicates that PD-L1 expression is a valuable predictor of the prognosis of patients with GC. PD-L1 expression could be used for identifying a subgroup of patients, who would potentially benefit from targeted therapy against PD-1 or PD-L1. Well-designed large-cohort studies are needed to confirm these findings.

摘要

程序性死亡配体 1(PD-L1)在胃癌(GC)中的预后价值仍存在争议。为了阐明这个问题,我们对 PubMed、EMBASE 和 Cochrane Library 数据库中确定的研究进行了荟萃分析。共有 10 项研究中的 1901 名患者纳入了这项荟萃分析,汇总的风险比(HR)为 1.64(95%置信区间 1.11 至 2.43;P=0.01)表明 PD-L1 表达与总生存期(OS)较短相关。汇总的比值比(OR)表明 PD-L1 表达与肿瘤大小(OR=1.87,95%置信区间 1.25 至 2.78;P=0.002)和淋巴结状态(OR=2.17,95%置信区间 1.04 至 4.52;P=0.04)相关。然而,PD-L1 与性别、年龄、癌症部位、分化程度、浸润深度和肿瘤分期无关。这项荟萃分析表明,PD-L1 表达是 GC 患者预后的一个有价值的预测指标。PD-L1 表达可用于识别可能受益于 PD-1 或 PD-L1 靶向治疗的患者亚组。需要进行设计良好的大型队列研究来证实这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2228/5124943/df439158ef69/srep37933-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验