IEEE Trans Pattern Anal Mach Intell. 2017 Oct;39(10):1905-1917. doi: 10.1109/TPAMI.2016.2631529. Epub 2016 Nov 22.
The quality assessment of sets of features extracted from patterns of epidermal ridges on our fingers is a biometric challenge problem with implications on questions concerning security, privacy and identity fraud. In this work, we introduced a new methodology to analyze the quality of high-resolution fingerprint images containing sets of fingerprint pores. Our approach takes into account the spatial interrelationship between the considered features and some basic transformations involving point process and anisotropic analysis. We proposed two new quality index algorithms following spatial and structural classes of analysis. These algorithms have proved to be effective as a performance predictor and as a filter excluding low-quality features in a recognition process. The experiments using error reject curves show that the proposed approaches outperform the state-of-the-art quality assessment algorithm for high-resolution fingerprint recognition, besides defining a new method for reconstructing their friction ridge phases in a very consistent way.
从我们手指的皮纹模式中提取的特征集的质量评估是一个生物识别挑战问题,涉及到安全、隐私和身份欺诈等问题。在这项工作中,我们引入了一种新的方法来分析包含指纹孔集的高分辨率指纹图像的质量。我们的方法考虑了所考虑特征之间的空间相互关系,以及涉及点过程和各向异性分析的一些基本变换。我们提出了两种新的质量指数算法,分别遵循空间和结构分析的类别。这些算法已被证明在识别过程中作为性能预测器和作为排除低质量特征的滤波器非常有效。使用错误拒绝曲线的实验表明,所提出的方法优于用于高分辨率指纹识别的最新质量评估算法,此外还定义了一种以非常一致的方式重建其摩擦脊相位的新方法。