Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands.
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
Nat Commun. 2016 Nov 29;7:13662. doi: 10.1038/ncomms13662.
Nonreciprocal components, such as isolators and circulators, provide highly desirable functionalities for optical circuitry. This motivates the active investigation of mechanisms that break reciprocity, and pose alternatives to magneto-optic effects in on-chip systems. In this work, we use optomechanical interactions to strongly break reciprocity in a compact system. We derive minimal requirements to create nonreciprocity in a wide class of systems that couple two optical modes to a mechanical mode, highlighting the importance of optically biasing the modes at a controlled phase difference. We realize these principles in a silica microtoroid optomechanical resonator and use quantitative heterodyne spectroscopy to demonstrate up to 10 dB optical isolation at telecom wavelengths. We show that nonreciprocal transmission is preserved for nondegenerate modes, and demonstrate nonreciprocal parametric amplification. These results open a route to exploiting various nonreciprocal effects in optomechanical systems in different electromagnetic and mechanical frequency regimes, including optomechanical metamaterials with topologically non-trivial properties.
非互易元件,如隔离器和环行器,为光电路提供了非常理想的功能。这促使人们积极研究打破互易性的机制,并为片上系统中的磁光效应提供替代方案。在这项工作中,我们使用光机械相互作用在一个紧凑的系统中强烈打破互易性。我们推导出在广泛的将两个光学模式耦合到一个机械模式的系统中产生非互易性的最小要求,突出了在受控相移下对模式进行光学偏置的重要性。我们在二氧化硅微环机械谐振器中实现了这些原理,并使用定量外差光谱法在电信波长下实现了高达 10 dB 的光隔离。我们表明非互易传输对于非简并模式是保持的,并演示了非互易参数放大。这些结果为在不同电磁和机械频率范围内的光机械系统中利用各种非互易效应开辟了道路,包括具有拓扑非平凡性质的光机械超材料。