Suppr超能文献

The reaction of S-mercuric-N-dansylcysteine with acetylcholinesterase and butyrylcholinesterase.

作者信息

Tomlinson G, Kinsch E M

机构信息

Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.

出版信息

Biochem Cell Biol. 1989 Jul;67(7):337-44. doi: 10.1139/o89-053.

Abstract

S-mercuric-N-dansylcysteine was investigated as a potential probe of protein sulphydryl groups using bovine serum albumin, S-carboxymethyl-bovine serum albumin, lysozyme, and partially reduced lysozyme as test proteins. Criteria used to assess covalent binding through mercury-bridged mercaptide linkages include a finite reaction time (minutes to hours), abolition of the characteristic fluorescence spectrum following addition of a reducing agent, and failure to separate probe and protein after chromatography or electrophoresis. By these criteria, both Torpedo californica acetylcholinesterase and human serum cholinesterase (butyrylcholinesterase) contain four free sulphydryl groups per tetrameric enzyme molecule whereas Electrophorus electricus acetylcholinesterase has none. Labeled acetylcholinesterase and butyrylcholinesterase remain active and responsive to the inactivator Zn2+. Zn2+ promotes an increase in the fluorescence of bound S-mercuric-N-dansylcysteine, whereas activators such as Mg2+ or gallamine promote a decrease, suggesting that the label may be a useful probe of ligand-induced conformational changes. With T. californica acetylcholinesterase, but not with human serum cholinesterase, Zn2+ also promotes access to two additional groups that are reactive towards the sulphydryl reagent.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验