Gee Alan H, Barbieri Riccardo, Paydarfar David, Indic Premananda
IEEE Trans Biomed Eng. 2017 Sep;64(9):2300-2308. doi: 10.1109/TBME.2016.2632746. Epub 2016 Nov 24.
Episodes of bradycardia are common and recur sporadically in preterm infants, posing a threat to the developing brain and other vital organs. We hypothesize that bradycardias are a result of transient temporal destabilization of the cardiac autonomic control system and that fluctuations in the heart rate signal might contain information that precedes bradycardia. We investigate infant heart rate fluctuations with a novel application of point process theory.
In ten preterm infants, we estimate instantaneous linear measures of the heart rate signal, use these measures to extract statistical features of bradycardia, and propose a simplistic framework for prediction of bradycardia.
We present the performance of a prediction algorithm using instantaneous linear measures (mean area under the curve = 0.79 ± 0.018) for over 440 bradycardia events. The algorithm achieves an average forecast time of 116 s prior to bradycardia onset (FPR = 0.15). Our analysis reveals that increased variance in the heart rate signal is a precursor of severe bradycardia. This increase in variance is associated with an increase in power from low content dynamics in the LF band (0.04-0.2 Hz) and lower multiscale entropy values prior to bradycardia.
Point process analysis of the heartbeat time series reveals instantaneous measures that can be used to predict infant bradycardia prior to onset.
Our findings are relevant to risk stratification, predictive monitoring, and implementation of preventative strategies for reducing morbidity and mortality associated with bradycardia in neonatal intensive care units.
心动过缓发作在早产儿中很常见且偶有复发,对发育中的大脑和其他重要器官构成威胁。我们假设心动过缓是心脏自主控制系统短暂的时间不稳定的结果,并且心率信号的波动可能包含心动过缓之前的信息。我们应用点过程理论的新方法来研究婴儿心率波动。
对10名早产儿,我们估计心率信号的瞬时线性测量值,用这些测量值提取心动过缓的统计特征,并提出一个简单的心动过缓预测框架。
我们展示了一种使用瞬时线性测量值的预测算法(曲线下平均面积 = 0.79 ± 0.018)对440多次心动过缓事件的性能。该算法在心动过缓发作前平均预测时间为116秒(假阳性率 = 0.15)。我们的分析表明,心率信号方差增加是严重心动过缓的先兆。这种方差增加与低频带(0.04 - 0.2赫兹)低含量动态的功率增加以及心动过缓前较低的多尺度熵值相关。
心跳时间序列的点过程分析揭示了可用于在发作前预测婴儿心动过缓的瞬时测量值。
我们的研究结果与新生儿重症监护病房中与心动过缓相关的风险分层、预测性监测以及降低发病率和死亡率的预防策略的实施相关。