Suppr超能文献

通过心率和呼吸的二元点过程分析改善早产儿心率估计

Improving heart rate estimation in preterm infants with bivariate point process analysis of heart rate and respiration.

作者信息

Gee Alan H, Barbieri Riccardo, Paydarfar David, Indic Premananda

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:920-923. doi: 10.1109/EMBC.2016.7590851.

Abstract

Accurate estimation of heart rate dynamics in preterm infants is important for predicting recurrent episodes of severe bradycardia. We hypothesize that estimation of heart rate can be improved by including respiration as a state variable, based on mechanisms that underlie cardio-respiratory coherence. For ten preterm infants, we demonstrate that including respiration as a covariate improves estimation accuracy by an average of 11% across bradycardia severity, and reduces the maximum error by 8%. We also find that cardio-respiratory coherence increases in low frequency content just prior to severe bradycardia. Thus, incorporating respiratory information may improve models of heart rate dynamics and narrow potential features for bradycardia prediction.

摘要

准确估计早产儿的心率动态对于预测严重心动过缓的复发事件很重要。我们假设,基于心肺相干的机制,将呼吸作为一个状态变量纳入心率估计中,可以提高心率估计的准确性。对于10名早产儿,我们证明,将呼吸作为协变量纳入后,在整个心动过缓严重程度范围内,估计准确率平均提高了11%,最大误差降低了8%。我们还发现,在严重心动过缓即将发生之前,低频成分中的心肺相干性会增加。因此,纳入呼吸信息可能会改善心率动态模型,并缩小心动过缓预测的潜在特征范围。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验