文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

慢性阻塞性肺疾病(COPD)中黏膜抗体、不可分型流感嗜血杆菌(NTHi)感染与气道炎症之间的关系

Relationships between Mucosal Antibodies, Non-Typeable Haemophilus influenzae (NTHi) Infection and Airway Inflammation in COPD.

作者信息

Staples Karl J, Taylor Stephen, Thomas Steve, Leung Stephanie, Cox Karen, Pascal Thierry G, Ostridge Kristoffer, Welch Lindsay, Tuck Andrew C, Clarke Stuart C, Gorringe Andrew, Wilkinson Tom M A

机构信息

Clinical & Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom.

Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Tremona Road, Southampton, United Kingdom.

出版信息

PLoS One. 2016 Nov 29;11(11):e0167250. doi: 10.1371/journal.pone.0167250. eCollection 2016.


DOI:10.1371/journal.pone.0167250
PMID:27898728
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5127575/
Abstract

Non-typeable Haemophilus influenzae (NTHi) is a key pathogen in COPD, being associated with airway inflammation and risk of exacerbation. Why some patients are susceptible to colonisation is not understood. We hypothesised that this susceptibility may be due to a deficiency in mucosal humoral immunity. The aim of our study (NCT01701869) was to quantify the amount and specificity of antibodies against NTHi in the lungs and the associated risk of infection and inflammation in health and COPD. Phlebotomy, sputum induction and bronchoscopy were performed on 24 mild-to-moderate COPD patients and 8 age and smoking-matched controls. BAL (Bronchoalveolar lavage) total IgG1, IgG2, IgG3, IgM and IgA concentrations were significantly increased in COPD patients compared to controls. NTHi was detected in the lungs of 7 of the COPD patients (NTHi+ve-29%) and these patients had a higher median number of previous exacerbations than NTHi-ve patients as well as evidence of increased systemic inflammation. When comparing NTHi+ve versus NTHi-ve patients we observed a decrease in the amount of both total IgG1 (p = 0.0068) and NTHi-specific IgG1 (p = 0.0433) in the BAL of NTHi+ve patients, but no differences in total IgA or IgM. We observed no evidence of decreased IgG1 in the serum of NTHi+ve patients, suggesting this phenomenon is restricted to the airway. Furthermore, the NTHi+ve patients had significantly greater levels of IL-1β (p = 0.0003), in BAL than NTHi-ve COPD patients.This study indicates that the presence of NTHi is associated with reduced levels and function of IgG1 in the airway of NTHi-colonised COPD patients. This decrease in total and NTHI-specific IgG1 was associated with greater systemic and airway inflammation and a history of more frequent exacerbations and may explain the susceptibility of some COPD patients to the impacts of NTHi.

摘要

不可分型流感嗜血杆菌(NTHi)是慢性阻塞性肺疾病(COPD)的关键病原体,与气道炎症和病情加重风险相关。目前尚不清楚为何有些患者易受其定植。我们推测这种易感性可能是由于黏膜体液免疫缺陷所致。我们研究(NCT01701869)的目的是量化肺部针对NTHi的抗体数量和特异性,以及健康人群和COPD患者中与之相关的感染和炎症风险。对24例轻至中度COPD患者及8例年龄和吸烟情况相匹配的对照者进行了静脉采血、痰液诱导和支气管镜检查。与对照组相比,COPD患者支气管肺泡灌洗(BAL)液中总IgG1、IgG2、IgG3、IgM和IgA浓度显著升高。7例COPD患者的肺部检测到NTHi(NTHi阳性,占29%),这些患者既往病情加重的中位数次数高于NTHi阴性患者,且有全身炎症增加的证据。比较NTHi阳性和阴性患者时,我们观察到NTHi阳性患者BAL液中总IgG1(p = 0.0068)和NTHi特异性IgG1(p = 0.0433)的量均减少,但总IgA或IgM无差异。我们未观察到NTHi阳性患者血清中IgG1减少的证据,表明这种现象仅限于气道。此外,NTHi阳性患者BAL液中IL-1β水平显著高于NTHi阴性的COPD患者(p = 0.0003)。本研究表明,NTHi的存在与NTHi定植的COPD患者气道中IgG1水平降低及其功能受损有关。总IgG1和NTHi特异性IgG1的这种降低与更严重的全身和气道炎症以及更频繁的病情加重病史相关,这可能解释了一些COPD患者对NTHi影响的易感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1064/5127575/039032068c91/pone.0167250.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1064/5127575/7ad49ffe78c6/pone.0167250.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1064/5127575/ed8f3703283d/pone.0167250.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1064/5127575/c43bc2b5425d/pone.0167250.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1064/5127575/0ef2c3fb8562/pone.0167250.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1064/5127575/c42baa8a67c2/pone.0167250.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1064/5127575/e972b405cf4b/pone.0167250.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1064/5127575/039032068c91/pone.0167250.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1064/5127575/7ad49ffe78c6/pone.0167250.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1064/5127575/ed8f3703283d/pone.0167250.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1064/5127575/c43bc2b5425d/pone.0167250.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1064/5127575/0ef2c3fb8562/pone.0167250.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1064/5127575/c42baa8a67c2/pone.0167250.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1064/5127575/e972b405cf4b/pone.0167250.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1064/5127575/039032068c91/pone.0167250.g007.jpg

相似文献

[1]
Relationships between Mucosal Antibodies, Non-Typeable Haemophilus influenzae (NTHi) Infection and Airway Inflammation in COPD.

PLoS One. 2016-11-29

[2]
Lung mucosal immunity to NTHi vaccine antigens: Antibodies in sputum of chronic obstructive pulmonary disease patients.

Hum Vaccin Immunother. 2024-12-31

[3]
The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable .

Front Immunol. 2018-11-5

[4]
Haemophilus influenzae and smoking-related obstructive airways disease.

Int J Chron Obstruct Pulmon Dis. 2011-6-16

[5]
Effects of repeated infections with non-typeable Haemophilus influenzae on lung in vitamin D deficient and smoking mice.

Respir Res. 2022-3-2

[6]
Contribution of dipeptidyl peptidase 4 to non-typeable Haemophilus influenzae-induced lung inflammation in COPD.

Clin Sci (Lond). 2021-9-17

[7]
Lung T-cell responses to nontypeable Haemophilus influenzae in patients with chronic obstructive pulmonary disease.

J Allergy Clin Immunol. 2012-11-8

[8]
Steroid-induced Deficiency of Mucosal-associated Invariant T Cells in the Chronic Obstructive Pulmonary Disease Lung. Implications for Nontypeable Haemophilus influenzae Infection.

Am J Respir Crit Care Med. 2016-11-15

[9]
Strain-specific pulmonary defense achieved after repeated airway immunizations with non-typeable haemophilus influenzae in a mouse model.

Tohoku J Exp Med. 2007-1

[10]
Patients with chronic obstructive pulmonary disease and chronically colonized with Haemophilus influenzae during stable disease phase have increased airway inflammation.

Int J Chron Obstruct Pulmon Dis. 2015-5-4

引用本文的文献

[1]
Associations of serum and bronchoalveolar immunoglobulins with lung microbiota diversity, B-cell memory phenotypes, and COPD morbidity and exacerbations.

Respir Res. 2025-7-18

[2]
Inflammatory Responses to Non-Typeable Clinical Isolates from Invasive and Non-Invasive Infections.

Pathogens. 2025-2-21

[3]
NTHi killing activity is reduced in COPD patients and is associated with a differential microbiome.

Respir Res. 2025-1-30

[4]
Tolerance to Haemophilus influenzae infection in human epithelial cells: Insights from a primary cell-based model.

PLoS Pathog. 2024-7

[5]
Lung mucosal immunity to NTHi vaccine antigens: Antibodies in sputum of chronic obstructive pulmonary disease patients.

Hum Vaccin Immunother. 2024-12-31

[6]
Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease.

Front Immunol. 2022

[7]
Airway immune responses to COVID-19 vaccination in COPD patients and healthy subjects.

Eur Respir J. 2022-8

[8]
Interrupting the Conversation: Implications for Crosstalk Between Viral and Bacterial Infections in the Asthmatic Airway.

Front Allergy. 2021-10-26

[9]
The functions of CD4 T-helper lymphocytes in chronic obstructive pulmonary disease.

Acta Biochim Biophys Sin (Shanghai). 2022-1-25

[10]
The Role of Extracellular Vesicles as a Shared Disease Mechanism Contributing to Multimorbidity in Patients With COPD.

Front Immunol. 2021

本文引用的文献

[1]
Corticosteroid modulation of immunoglobulin expression and B-cell function in COPD.

FASEB J. 2016-5

[2]
Relationship between pulmonary matrix metalloproteinases and quantitative CT markers of small airways disease and emphysema in COPD.

Thorax. 2015-12-8

[3]
A Retrospective Longitudinal Within-Subject Risk Interval Analysis of Immunoglobulin Treatment for Recurrent Acute Exacerbation of Chronic Obstructive Pulmonary Disease.

PLoS One. 2015-11-11

[4]
Dysregulation of Antiviral Function of CD8(+) T Cells in the Chronic Obstructive Pulmonary Disease Lung. Role of the PD-1-PD-L1 Axis.

Am J Respir Crit Care Med. 2016-3-15

[5]
Airway bacteria measured by quantitative polymerase chain reaction and culture in patients with stable COPD: relationship with neutrophilic airway inflammation, exacerbation frequency, and lung function.

Int J Chron Obstruct Pulmon Dis. 2015-6-9

[6]
Expression of IgA Proteases by Haemophilus influenzae in the Respiratory Tract of Adults With Chronic Obstructive Pulmonary Disease.

J Infect Dis. 2015-12-1

[7]
IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production.

Mucosal Immunol. 2015-7

[8]
Increased IgA production by B-cells in COPD via lung epithelial interleukin-6 and TACI pathways.

Eur Respir J. 2014-12-23

[9]
SRST2: Rapid genomic surveillance for public health and hospital microbiology labs.

Genome Med. 2014-11-20

[10]
Inflammatory thresholds and the species-specific effects of colonising bacteria in stable chronic obstructive pulmonary disease.

Respir Res. 2014-9-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索