Suppr超能文献

比较双列生菜群体中表型和标记辅助选择方法的预测能力。

Comparing the Predictive Abilities of Phenotypic and Marker-Assisted Selection Methods in a Biparental Lettuce Population.

出版信息

Plant Genome. 2016 Mar;9(1). doi: 10.3835/plantgenome2015.03.0014.

Abstract

Breeding for traits with polygenic inheritance is a challenging task that can be done by phenotypic selection, marker-assisted selection (MAS) or genome-wide selection. We comparatively evaluated the predictive abilities of four selection models on a biparental lettuce ( L.) population genotyped with 95 single nucleotide polymorphisms and 205 amplified fragment length polymorphism markers. These models were based on (i) phenotypic selection, (ii) MAS (with quantitative trait locus (QTL)-linked markers), (iii) genomic prediction using all the available molecular markers, and (iv) genomic prediction using molecular markers plus QTL-linked markers as fixed covariates. Each model's performance was assessed using data on the field resistance to downy mildew (DMR, mean heritability ∼0.71) and the quality of shelf life (SL, mean heritability ∼0.91) of lettuce in multiple environments. The predictive ability of each selection model was computed under three cross-validation (CV) schemes based on sampling genotypes, environments, or both. For the DMR dataset, the predictive ability of the MAS model was significantly lower than that of the genomic prediction model. For the SL dataset, the predictive ability of the genomic prediction model was significantly lower than that for the model using QTL-linked markers under two of the three CV schemes. Our results show that the predictive ability of the selection models depends strongly on the CV scheme used for prediction and the heritability of the target trait. Our study also shows that molecular markers can be used to predict DMR and SL for individuals from this cross that were genotyped but not phenotyped.

摘要

多基因遗传性状的选育是一项具有挑战性的任务,可以通过表型选择、标记辅助选择(MAS)或全基因组选择来完成。我们比较评估了四个选择模型在双列生菜(L.)群体中的预测能力,该群体使用 95 个单核苷酸多态性和 205 个扩增片段长度多态性标记进行了基因型分析。这些模型基于(i)表型选择,(ii)MAS(使用与数量性状基因座(QTL)相关的标记),(iii)使用所有可用分子标记进行基因组预测,以及(iv)使用分子标记加 QTL 相关标记作为固定协变量进行基因组预测。使用生菜田间抗霜霉病(DMR,平均遗传力约为 0.71)和货架期质量(SL,平均遗传力约为 0.91)的多个环境中的数据评估了每个模型的性能。根据基于抽样基因型、环境或两者的三种交叉验证(CV)方案计算了每个选择模型的预测能力。对于 DMR 数据集,MAS 模型的预测能力明显低于基因组预测模型。对于 SL 数据集,在三种 CV 方案中的两种方案下,基因组预测模型的预测能力明显低于使用 QTL 相关标记的模型。我们的结果表明,选择模型的预测能力强烈依赖于用于预测的 CV 方案和目标性状的遗传力。我们的研究还表明,可以使用分子标记来预测来自该杂交种的个体的 DMR 和 SL,这些个体已经进行了基因型分析但未进行表型分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验