Plant Genome. 2016 Nov;9(3). doi: 10.3835/plantgenome2016.01.0009.
Progress in the rate of improvement in autopolyploid species has been limited compared with diploids, mainly because software and methods to apply advanced prediction and selection methodologies in autopolyploids are lacking. The objectives of this research were to (i) develop an R package for autopolyploids to construct the relationship matrix derived from pedigree information that accounts for autopolyploidy and double reduction and (ii) use the package to estimate the level and effect of double reduction in an autotetraploid blueberry breeding population with extensive pedigree information. The package is unique, as it can create A-matrices for different levels of ploidy and double reduction, which can then be used by breeders to fit mixed models in the context of predicting breeding values (BVs). Using the data from this blueberry population, we found for all the traits that tetrasomic inheritance creates a better fit than disomic inheritance. In one of the five traits studied, the level of double reduction was different from zero, decreasing the estimated heritability, but it did not affect the prediction of BVs. We also discovered that different depths of pedigree would have significant implications on the estimation of double reduction using this approach. This freely available R package is available for autopolyploid breeders to estimate the level of double reduction present in their populations and the impact in the estimation of genetic parameters as well as to use advanced methods of prediction and selection.
与二倍体相比,同源多倍体物种的改良速度进展有限,主要是因为缺乏用于同源多倍体的先进预测和选择方法的软件和方法。本研究的目的是:(i) 开发一个同源多倍体的 R 包,用于构建基于系谱信息的关系矩阵,该矩阵考虑了同源多倍体和减数分裂后染色体减半;(ii) 使用该软件包评估具有广泛系谱信息的同源四倍体蓝莓育种群体中减数分裂后染色体减半的水平和效应。该软件包是独一无二的,因为它可以为不同的倍性和减数分裂后染色体减半水平创建 A 矩阵,然后育种者可以在预测育种值 (BV) 的背景下使用混合模型进行适配。利用来自该蓝莓群体的数据,我们发现对于所有性状,四体遗传比二体遗传产生更好的拟合。在所研究的五个性状之一中,减数分裂后染色体减半的水平不同于零,降低了估计的遗传力,但它不影响 BV 的预测。我们还发现,使用这种方法,系谱的不同深度会对减数分裂后染色体减半的估计产生重大影响。这个免费的 R 包可供同源多倍体育种者使用,以估计其群体中减数分裂后染色体减半的水平,以及这种情况对遗传参数估计的影响,同时还可以使用先进的预测和选择方法。