Suppr超能文献

优化用于预测玉米杂交种中伏马菌素抗性的单步模型,同时考虑基因型与环境的相互作用。

Optimizing the single-step model for predicting fumonisins resistance in maize hybrids accounting for the genotype-by-environment interaction.

作者信息

Evangelista Jeniffer Santana Pinto Coelho, Dias Kaio Olimpo das Graças, Pastina Maria Marta, Chaves Saulo, Guimarães Lauro José Moreira, Hidalgo Jorge, Garcia-Abadillo Julian, Persa Reyna, Queiroz Valéria Aparecida Vieira, da Silva Dagma Dionísia, Bhering Leonardo Lopes, Jarquin Diego

机构信息

Agronomy Department, University of Florida, Gainesville, FL, United States.

Departamento de Biologia Geral, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais, Brazil.

出版信息

Front Genet. 2025 Jul 2;16:1475452. doi: 10.3389/fgene.2025.1475452. eCollection 2025.

Abstract

In Brazil, disease outbreaks in plant cultivars are common in tropical zones. For example, the fungus produces mycotoxins called fumonisins (FUMO) which are harmful to human and animal health. Besides the genetic component, the expression of this polygenic trait is regulated by interactions between genes and environmental factors (G × E). Genomic selection (GS) emerges as a promising approach to address the influence of multiple loci on resistance. We examined different manners to conduct the prediction of FUMO contamination using genomic and pedigree data, and combinations of these two via the single step model (-matrix) which also offers the possibility of increasing training set sizes. This is the first study to apply the -matrix approach for predicting FUMO in tropical maize breeding programs. Our research introduced a cross-validation approach to optimize the hyper-parameter , which represents the fraction of total additive variance captured by the markers. We demonstrated the importance of selecting optimal w by environment in unbalanced datasets. A total of 13 predictive models considering General Combining Ability (GCA) and Specific Combining Ability (SCA) effects, resulted from five linear predictors and three different covariance structures including the single-step approach. Two cross-validation scenarios were considered to evaluate the model's proficiency: CV1 simulated the prediction of completely untested hybrids, where the individuals in the validation set had no phenotypic records in the training set; and CV2 simulated the prediction of partially tested hybrids, where individuals had been evaluated in some environments but not in the target environment. Results showed that using the -matrix in the five tested linear models increased the predictive ability compared to pedigree or genomic information. Under CV1, increasing training set sizes exhibit superior predictive accuracy. On the other hand, under CV2 the advantages of increasing the training set size are unclear and the improvements are due to better covariance structures. These insights can be applied to plant breeding programs where the GCA, SCA, and G × E interactions are of interest and pedigree information is accessible, but constraints related to genotyping costs for the entire population exist.

摘要

在巴西,植物品种的疾病爆发在热带地区很常见。例如,这种真菌会产生名为伏马菌素(FUMO)的霉菌毒素,对人类和动物健康有害。除了遗传成分外,这种多基因性状的表达还受基因与环境因素之间相互作用(G×E)的调控。基因组选择(GS)作为一种有前景的方法出现,以应对多个基因座对抗性的影响。我们研究了使用基因组和系谱数据以及通过单步模型(-矩阵)将这两者结合来进行FUMO污染预测的不同方式,单步模型还提供了增加训练集规模的可能性。这是第一项将-矩阵方法应用于热带玉米育种计划中预测FUMO的研究。我们的研究引入了一种交叉验证方法来优化超参数,该超参数表示标记捕获的总加性方差的比例。我们证明了在不平衡数据集中按环境选择最佳w的重要性。考虑一般配合力(GCA)和特殊配合力(SCA)效应的总共13个预测模型,由五个线性预测器和三种不同的协方差结构(包括单步方法)产生。考虑了两种交叉验证方案来评估模型的熟练度:CV1模拟完全未测试杂交种的预测,其中验证集中的个体在训练集中没有表型记录;CV2模拟部分测试杂交种的预测,其中个体在某些环境中进行了评估,但在目标环境中未进行评估。结果表明,与系谱或基因组信息相比,在五个测试的线性模型中使用-矩阵提高了预测能力。在CV1下,增加训练集规模表现出更高的预测准确性。另一方面,在CV2下,增加训练集规模的优势不明显,改进归因于更好的协方差结构。这些见解可应用于关注GCA、SCA和G×E相互作用且可获取系谱信息,但存在与整个人口基因分型成本相关限制的植物育种计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/086e/12263360/32a25f36194e/fgene-16-1475452-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验