Suppr超能文献

轴突损伤诱导内质网应激和神经退行性变。

Axon injury induced endoplasmic reticulum stress and neurodegeneration.

作者信息

Hu Yang

机构信息

Shriners Hospitals Pediatric Research Center (Center for Neural Repair and Rehabilitation), Temple University School of Medicine, Philadelphia, PA, USA.

出版信息

Neural Regen Res. 2016 Oct;11(10):1557-1559. doi: 10.4103/1673-5374.193225.

Abstract

Injury to central nervous system axons is a common early characteristic of neurodegenerative diseases. Depending on its location and the type of neuron, axon injury often leads to axon degeneration, retrograde neuronal cell death and progressive permanent loss of vital neuronal functions. Although these sequential events are clearly connected, ample evidence indicates that neuronal soma and axon degenerations are active autonomous processes with distinct molecular mechanisms. By exploiting the anatomical and technical advantages of the retinal ganglion cell (RGC)/optic nerve (ON) system, we demonstrated that inhibition of the PERK-eIF2α-CHOP pathway and activation of the X-box binding protein 1 pathway synergistically protect RGC soma and axon, and preserve visual function, in both acute ON traumatic injury and chronic glaucomatous neuropathy. The autonomous endoplasmic reticulum (ER) stress pathway in neurons has been implicated in several other neurodegenerative diseases. In addition to the emerging role of ER morphology in axon maintenance, we propose that ER stress is a common upstream signal for disturbances in axon integrity, and that it leads to a retrograde signal that can subsequently induce neuronal soma death. Therefore manipulation of the ER stress pathway may be a key step toward developing the effective neuroprotectants that are greatly needed in the clinic.

摘要

中枢神经系统轴突损伤是神经退行性疾病常见的早期特征。根据其位置和神经元类型,轴突损伤常导致轴突变性、逆行性神经元细胞死亡以及重要神经元功能的渐进性永久性丧失。尽管这些连续事件明显相关,但大量证据表明,神经元胞体和轴突的变性是具有不同分子机制的活跃自主过程。通过利用视网膜神经节细胞(RGC)/视神经(ON)系统的解剖学和技术优势,我们证明,在急性视神经创伤性损伤和慢性青光眼性神经病变中,抑制PERK-eIF2α-CHOP途径并激活X-box结合蛋白1途径可协同保护RGC胞体和轴突,并保留视觉功能。神经元中的自主内质网(ER)应激途径与其他几种神经退行性疾病有关。除了ER形态在轴突维持中的新作用外,我们提出ER应激是轴突完整性紊乱的常见上游信号,并且它会导致逆行信号,随后可诱导神经元胞体死亡。因此,操纵ER应激途径可能是开发临床上急需的有效神经保护剂的关键一步。

相似文献

1
Axon injury induced endoplasmic reticulum stress and neurodegeneration.
Neural Regen Res. 2016 Oct;11(10):1557-1559. doi: 10.4103/1673-5374.193225.
3
Neuronal endoplasmic reticulum stress in axon injury and neurodegeneration.
Ann Neurol. 2013 Dec;74(6):768-77. doi: 10.1002/ana.24005. Epub 2013 Oct 7.
4
Neuroprotection by eIF2α-CHOP inhibition and XBP-1 activation in EAE/optic neuritiss.
Cell Death Dis. 2017 Jul 20;8(7):e2936. doi: 10.1038/cddis.2017.329.
5
Together JUN and DDIT3 (CHOP) control retinal ganglion cell death after axonal injury.
Mol Neurodegener. 2017 Oct 2;12(1):71. doi: 10.1186/s13024-017-0214-8.
6
RGC-specific ATF4 and/or CHOP deletion rescues glaucomatous neurodegeneration and visual function.
Mol Ther Nucleic Acids. 2023 Jul 15;33:286-295. doi: 10.1016/j.omtn.2023.07.015. eCollection 2023 Sep 12.
7
Assessment of retinal ganglion cell damage in glaucomatous optic neuropathy: Axon transport, injury and soma loss.
Exp Eye Res. 2015 Dec;141:111-24. doi: 10.1016/j.exer.2015.06.006. Epub 2015 Jun 9.
8
Endoplasmic reticulum stress in retinal vascular degeneration: protective role of resveratrol.
Invest Ophthalmol Vis Sci. 2012 May 31;53(6):3241-9. doi: 10.1167/iovs.11-8406.
9
Endoplasmic Reticulum Stress Contributes to the Loss of Newborn Hippocampal Neurons after Traumatic Brain Injury.
J Neurosci. 2018 Feb 28;38(9):2372-2384. doi: 10.1523/JNEUROSCI.1756-17.2018. Epub 2018 Jan 31.

引用本文的文献

2
RGC-specific ATF4 and/or CHOP deletion rescues glaucomatous neurodegeneration and visual function.
Mol Ther Nucleic Acids. 2023 Jul 15;33:286-295. doi: 10.1016/j.omtn.2023.07.015. eCollection 2023 Sep 12.
4
Differential effects of SARM1 inhibition in traumatic glaucoma and EAE optic neuropathies.
Mol Ther Nucleic Acids. 2023 Feb 27;32:13-27. doi: 10.1016/j.omtn.2023.02.029. eCollection 2023 Jun 13.
5
Deficiency of the RNA-binding protein ELAVL1/HuR leads to the failure of endogenous and exogenous neuroprotection of retinal ganglion cells.
Front Cell Neurosci. 2023 Feb 17;17:1131356. doi: 10.3389/fncel.2023.1131356. eCollection 2023.
6
Characterization of circular RNAs in dorsal root ganglia after central and peripheral axon injuries.
Front Cell Neurosci. 2022 Dec 12;16:1046050. doi: 10.3389/fncel.2022.1046050. eCollection 2022.
7
Valproate reduces retinal ganglion cell apoptosis in rats after optic nerve crush.
Neural Regen Res. 2023 Jul;18(7):1607-1612. doi: 10.4103/1673-5374.357913.
9
The Intertwined Roles of Oxidative Stress and Endoplasmic Reticulum Stress in Glaucoma.
Antioxidants (Basel). 2022 Apr 29;11(5):886. doi: 10.3390/antiox11050886.
10
Endoplasmic Reticulum Stress in Chemotherapy-Induced Peripheral Neuropathy: Emerging Role of Phytochemicals.
Antioxidants (Basel). 2022 Jan 28;11(2):265. doi: 10.3390/antiox11020265.

本文引用的文献

2
Axon Self-Destruction: New Links among SARM1, MAPKs, and NAD+ Metabolism.
Neuron. 2016 Feb 3;89(3):449-60. doi: 10.1016/j.neuron.2015.12.023.
3
Protein misfolding in the endoplasmic reticulum as a conduit to human disease.
Nature. 2016 Jan 21;529(7586):326-35. doi: 10.1038/nature17041.
4
Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia.
Nat Genet. 2015 Jul;47(7):757-65. doi: 10.1038/ng.3319. Epub 2015 Jun 1.
6
Pathological axonal death through a MAPK cascade that triggers a local energy deficit.
Cell. 2015 Jan 15;160(1-2):161-76. doi: 10.1016/j.cell.2014.11.053.
7
Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions.
Cell. 2014 Aug 28;158(5):1159-1172. doi: 10.1016/j.cell.2014.07.001.
8
Wallerian degeneration: an emerging axon death pathway linking injury and disease.
Nat Rev Neurosci. 2014 Jun;15(6):394-409. doi: 10.1038/nrn3680.
10
Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases.
Nat Rev Neurosci. 2014 Apr;15(4):233-49. doi: 10.1038/nrn3689. Epub 2014 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验