Appelbe B
The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom.
Chaos. 2016 Nov;26(11):113104. doi: 10.1063/1.4966944.
The open stadium billiard has a survival probability, P(t), that depends on the rate of escape of particles through the leak. It is known that the decay of P(t) is exponential early in time while for long times the decay follows a power law. In this work, we investigate an open stadium billiard in which the leak is free to rotate around the boundary of the stadium at a constant velocity, ω. It is found that P(t) is very sensitive to ω. For certain ω values P(t) is purely exponential while for other values the power law behaviour at long times persists. We identify three ranges of ω values corresponding to three different responses of P(t). It is shown that these variations in P(t) are due to the interaction of the moving leak with Marginally Unstable Periodic Orbits (MUPOs).
开放体育场台球有一个生存概率(P(t)),它取决于粒子通过泄漏口逃逸的速率。已知在早期(P(t))的衰减是指数形式的,而在长时间时衰减遵循幂律。在这项工作中,我们研究了一个开放体育场台球,其中泄漏口以恒定角速度(\omega)绕体育场边界自由旋转。发现(P(t))对(\omega)非常敏感。对于某些(\omega)值,(P(t))是纯指数形式的,而对于其他值,长时间的幂律行为仍然存在。我们确定了(\omega)值的三个范围,对应于(P(t))的三种不同响应。结果表明,(P(t))的这些变化是由于移动的泄漏口与边缘不稳定周期轨道(MUPOs)的相互作用引起的。