Suppr超能文献

一种使用易于获取的测量数据和神经模糊评估系统进行阻塞性睡眠呼吸暂停严重程度自我评估的新方法。

A New Method for Self-Estimation of the Severity of Obstructive Sleep Apnea Using Easily Available Measurements and Neural Fuzzy Evaluation System.

出版信息

IEEE J Biomed Health Inform. 2017 Nov;21(6):1524-1532. doi: 10.1109/JBHI.2016.2633986. Epub 2016 Nov 30.

Abstract

This paper proposes a neural fuzzy evaluation system (NFES) with significant variables selected from stepwise regression to predict apnea-hypopnea index (AHI) for evaluating obstructive sleep apnea (OSA). The variables considered are the change statuses of blood pressure (BP) before going to sleep and early in the morning as well as other five easily available measurements (age, body mass index (BMI), etc.) so that users can use the system for self-evaluation of OSA. A total of 150 subjects are reviewed retrospectively and categorized as training (120 subjects) and validation (30 subjects) sets by a fivefold cross-validation scheme with stratified sampling based on the OSA severity. Among the eight variables, the stepwise regression shows that BMI, the difference of systolic BP, and Epworth Sleepiness Scale were the significant factors to predict AHI. The three variables are fed as inputs to the NFES with interpretable fuzzy rules automatically generated from the training set. The average accuracy, sensitivity (Sn), specificity (Sp), and Sn+Sp-1 of the NFES were 75.6%, 77.2%, 75.0%, and 0.552, respectively, in distinguishing the OSA level of normal-mild (AHI <15) from moderate-severe (AHI ≱ 15), and outperformed the stepwise regression, back-propagation neural network, and support vector machine models. In addition to personal self-estimation, physicians could differentiate the two OSA levels by means of the fast-screening system for both outpatients and inpatients.

摘要

本文提出了一种基于逐步回归选择显著变量的神经模糊评价系统 (NFES),以预测阻塞性睡眠呼吸暂停 (OSA) 的呼吸暂停低通气指数 (AHI)。所考虑的变量包括睡眠前和清晨血压 (BP) 的变化状态以及其他五个易于获得的测量值(年龄、体重指数 (BMI) 等),以便用户可以使用该系统进行 OSA 的自我评估。共回顾了 150 例患者,并通过基于分层抽样的五重交叉验证方案将其分为训练 (120 例) 和验证 (30 例) 集,根据 OSA 的严重程度进行分层。在这 8 个变量中,逐步回归显示 BMI、收缩压差值和 Epworth 嗜睡量表是预测 AHI 的显著因素。这三个变量作为输入输入到 NFES 中,由训练集自动生成可解释的模糊规则。NFES 在区分正常轻度(AHI <15)和中重度(AHI ≱15)OSA 水平方面的平均准确率、灵敏度 (Sn)、特异性 (Sp) 和 Sn+Sp-1 分别为 75.6%、77.2%、75.0%和 0.552,优于逐步回归、反向传播神经网络和支持向量机模型。除了个人自我评估外,医生还可以通过快速筛查系统对门诊和住院患者进行这两种 OSA 水平的区分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验