Suppr超能文献

无处不在的医疗保健测量中的个性化康复识别。

Personalized Rehabilitation Recognition for Ubiquitous Healthcare Measurements.

机构信息

Department of Electrical Engineering, Yuan Ze University, Chung-Li, Taoyuan City 32003, Taiwan.

Department and Institute of Health Service Administrations, China Medical University, Taichung, Taoyuan City 40402, Taiwan.

出版信息

Sensors (Basel). 2019 Apr 8;19(7):1679. doi: 10.3390/s19071679.

Abstract

The physical therapeutic application needs personalized rehabilitation recognition (PRR) for ubiquitous healthcare measurements (UHMs). This study employed the adaptive neuro-fuzzy inference system (ANFIS) to generate a PRR model for a self-development system of UHM. The subjects wore a sensor-enabled wristband during physiotherapy exercises to measure the scheduled motions of their limbs. In the model, the sampling data collected from the scheduled motions are labeled by an arbitrary number within a defined range. The sample datasets are referred as the design of an initial fuzzy inference system (FIS) with data preprocessing, feature visualizing, fuzzification, and fuzzy logic rules. The ANFIS then processes data training to adjust the FIS for optimization. The trained FIS then can infer the motion labels via defuzzification to recognize the features in the test data. The average recognition rate was higher than 90% for the testing motions if the subject followed the sampling schedule. With model implementation, the middle section of motion datasets in each second is recommended for recognition in the UHM system which also includes a mobile App to retrieve the personalized FIS in order to trace the exercise. This approach contributes a PRR model with trackable diagrams for the physicians to explore the rehabilitation motions in details.

摘要

物理治疗应用需要个性化康复识别(PRR)来进行无处不在的医疗保健测量(UHMs)。本研究采用自适应神经模糊推理系统(ANFIS)为 UHM 的自开发系统生成 PRR 模型。受试者在物理治疗运动期间佩戴带传感器的腕带,以测量其肢体的预定运动。在模型中,从预定运动中收集的采样数据由定义范围内的任意数字标记。样本数据集被称为初始模糊推理系统(FIS)的设计,具有数据预处理、特征可视化、模糊化和模糊逻辑规则。然后,ANFIS 处理数据训练以调整 FIS 进行优化。经过训练的 FIS 然后可以通过去模糊化推断运动标签,以识别测试数据中的特征。如果受试者按照采样计划进行,测试运动的平均识别率高于 90%。通过模型实现,建议在 UHM 系统中识别每秒钟的运动数据集的中间部分,该系统还包括一个移动应用程序,以检索个性化的 FIS 以便跟踪运动。该方法提供了一个具有可跟踪图表的 PRR 模型,供医生详细探索康复运动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/303a/6479922/5f2f8a481f4c/sensors-19-01679-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验