Department of Physics, Northeastern University, Boston, MA, 02115, USA.
Physics Department, King Abdulaziz University, Rabigh, 21911, Saudi Arabia.
Sci Rep. 2016 Dec 5;6:37993. doi: 10.1038/srep37993.
The diverse properties of DNA intercalators, varying in affinity and kinetics over several orders of magnitude, provide a wide range of applications for DNA-ligand assemblies. Unconventional intercalation mechanisms may exhibit high affinity and slow kinetics, properties desired for potential therapeutics. We used single-molecule force spectroscopy to probe the free energy landscape for an unconventional intercalator that binds DNA through a novel two-step mechanism in which the intermediate and final states bind DNA through the same mono-intercalating moiety. During this process, DNA undergoes significant structural rearrangements, first lengthening before relaxing to a shorter DNA-ligand complex in the intermediate state to form a molecular lock. To reach the final bound state, the molecular length must increase again as the ligand threads between disrupted DNA base pairs. This unusual binding mechanism results in an unprecedented optimized combination of high DNA binding affinity and slow kinetics, suggesting a new paradigm for rational design of DNA intercalators.
DNA 插入剂的多样性特性,在亲和力和动力学方面跨越几个数量级,为 DNA-配体组装提供了广泛的应用。非传统的插入机制可能表现出高亲和力和慢动力学,这些特性是潜在治疗药物所期望的。我们使用单分子力谱技术来探测一种非传统插入剂的自由能景观,该插入剂通过一种新颖的两步机制与 DNA 结合,其中中间态和最终态通过相同的单插入部分与 DNA 结合。在这个过程中,DNA 经历了显著的结构重排,首先在中间态拉长,然后松弛到较短的 DNA-配体复合物,形成分子锁。为了达到最终的结合态,配体在破坏的 DNA 碱基对之间穿过后,分子长度必须再次增加。这种不寻常的结合机制导致了前所未有的高 DNA 结合亲和力和慢动力学的优化组合,为 DNA 插入剂的合理设计提供了一个新的范例。