Clark Andrew G, Naufer M Nabuan, Westerlund Fredrik, Lincoln Per, Rouzina Ioulia, Paramanathan Thayaparan, Williams Mark C
Department of Physics, Northeastern University , Boston, Massachusetts 02115, United States.
Department of Biology and Biological Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden.
Biochemistry. 2018 Feb 6;57(5):614-619. doi: 10.1021/acs.biochem.7b01036. Epub 2018 Jan 5.
Molecules that bind DNA via threading intercalation show high binding affinity as well as slow dissociation kinetics, properties ideal for the development of anticancer drugs. To this end, it is critical to identify the specific molecular characteristics of threading intercalators that result in optimal DNA interactions. Using single-molecule techniques, we quantify the binding of a small metal-organic ruthenium threading intercalator (Δ,Δ-B) and compare its binding characteristics to a similar molecule with significantly larger threading moieties (Δ,Δ-P). The binding affinities of the two molecules are the same, while comparison of the binding kinetics reveals significantly faster kinetics for Δ,Δ-B. However, the kinetics is still much slower than that observed for conventional intercalators. Comparison of the two threading intercalators shows that the binding affinity is modulated independently by the intercalating section and the binding kinetics is modulated by the threading moiety. In order to thread DNA, Δ,Δ-P requires a "lock mechanism", in which a large length increase of the DNA duplex is required for both association and dissociation. In contrast, measurements of the force-dependent binding kinetics show that Δ,Δ-B requires a large DNA length increase for association but no length increase for dissociation from DNA. This contrasts strongly with conventional intercalators, for which almost no DNA length change is required for association but a large DNA length change must occur for dissociation. This result illustrates the fundamentally different mechanism of threading intercalation compared with conventional intercalation and will pave the way for the rational design of therapeutic drugs based on DNA threading intercalation.
通过穿线插入方式与DNA结合的分子表现出高结合亲和力以及缓慢的解离动力学,这些特性对于抗癌药物的开发而言是理想的。为此,识别导致最佳DNA相互作用的穿线插入剂的特定分子特征至关重要。我们使用单分子技术,对一种小型金属有机钌穿线插入剂(Δ,Δ-B)的结合进行了量化,并将其结合特征与具有明显更大穿线部分的类似分子(Δ,Δ-P)进行了比较。这两种分子的结合亲和力相同,而结合动力学的比较显示Δ,Δ-B的动力学明显更快。然而,其动力学仍比传统插入剂观察到的要慢得多。对这两种穿线插入剂的比较表明,结合亲和力由插入部分独立调节,而结合动力学由穿线部分调节。为了穿入DNA,Δ,Δ-P需要一种“锁定机制”,在这种机制中,DNA双链的长度大幅增加对于结合和解离都是必需的。相比之下,对力依赖型结合动力学的测量表明,Δ,Δ-B结合时需要DNA长度大幅增加,但从DNA解离时不需要长度增加。这与传统插入剂形成了强烈对比,传统插入剂结合时几乎不需要DNA长度变化,但解离时必须发生较大的DNA长度变化。这一结果说明了穿线插入与传统插入在根本上不同的机制,并将为基于DNA穿线插入的治疗药物的合理设计铺平道路。