Physics Department , King Abdulaziz University , Rabigh 21911 , Saudi Arabia.
Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
J Am Chem Soc. 2019 Jan 30;141(4):1537-1545. doi: 10.1021/jacs.8b10252. Epub 2019 Jan 17.
Phenanthriplatin, a monofunctional anticancer agent derived from cisplatin, shows significantly more rapid DNA covalent-binding activity compared to its parent complex. To understand the underlying molecular mechanism, we used single-molecule studies with optical tweezers to probe the kinetics of DNA-phenanthriplatin binding as well as DNA binding to several control complexes. The time-dependent extensions of single λ-DNA molecules were monitored at constant applied forces and compound concentrations, followed by rinsing with a compound-free solution. DNA-phenanthriplatin association consisted of fast and reversible DNA lengthening with time constant τ ≈ 10 s, followed by slow and irreversible DNA elongation that reached equilibrium in ∼30 min. In contrast, only reversible fast DNA elongation occured for its stereoisomer trans-phenanthriplatin, suggesting that the distinct two-rate kinetics of phenanthriplatin is sensitive to the geometric conformation of the complex. Furthermore, no DNA unwinding was observed for pyriplatin, in which the phenanthridine ligand of phenanthriplatin is replaced by the smaller pyridine molecule, indicating that the size of the aromatic group is responsible for the rapid DNA elongation. These findings suggest that the mechanism of binding of phenanthriplatin to DNA involves rapid, partial intercalation of the phenanthridine ring followed by slower substitution of the adjacent chloride ligand by, most likely, the N7 atom of a purine base. The cis isomer affords the proper stereochemistry at the metal center to facilitate essentially irreversible DNA covalent binding, a geometric advantage not afforded by trans-phenanthriplatin. This study demonstrates that reversible DNA intercalation provides a robust transition state that is efficiently converted to an irreversible DNA-Pt bound state.
菲咯嗪铂是一种从顺铂衍生而来的单功能抗癌药物,与母体复合物相比,其 DNA 共价结合活性显著增强。为了理解其潜在的分子机制,我们使用单分子研究中的光学镊子技术来探测 DNA-菲咯嗪铂结合的动力学以及几种对照复合物与 DNA 的结合。在恒定的应用力和化合物浓度下监测单 λ-DNA 分子的时变延伸,然后用不含化合物的溶液冲洗。DNA-菲咯嗪铂的结合包括快速且可逆的 DNA 延长,时间常数 τ ≈ 10 s,随后是缓慢且不可逆的 DNA 伸长,在约 30 分钟达到平衡。相比之下,其对映异构体 trans-菲咯嗪铂仅发生可逆的快速 DNA 伸长,表明菲咯嗪铂的独特两速动力学对复合物的几何构象敏感。此外,对于其中菲咯嗪配体被较小的吡啶分子取代的吡嗪铂,未观察到 DNA 解旋,表明芳香族基团的大小负责快速的 DNA 伸长。这些发现表明,菲咯嗪铂与 DNA 的结合机制涉及菲咯嗪环的快速、部分嵌入,随后较慢地由嘌呤碱基的 N7 原子取代相邻的氯配体。顺式异构体在金属中心提供适当的立体化学,有利于基本上不可逆的 DNA 共价结合,这是反式菲咯嗪铂所没有的几何优势。这项研究表明,可逆的 DNA 嵌入提供了一个有效的过渡态,可有效地转化为不可逆的 DNA-Pt 结合状态。