Suppr超能文献

在尤因肉瘤组织工程肿瘤模型中模拟基质诱导的耐药性

Modeling Stroma-Induced Drug Resistance in a Tissue-Engineered Tumor Model of Ewing Sarcoma.

作者信息

Santoro Marco, Menegaz Brian A, Lamhamedi-Cherradi Salah-Eddine, Molina Eric R, Wu Danielle, Priebe Waldemar, Ludwig Joseph A, Mikos Antonios G

机构信息

1 Department of Chemical and Biomolecular Engineering, Rice University , Houston, Texas.

2 Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center , Houston, Texas.

出版信息

Tissue Eng Part A. 2017 Jan;23(1-2):80-89. doi: 10.1089/ten.TEA.2016.0369.

Abstract

Three-dimensional (3D) tumor models are gaining traction in the research community given their capacity to mimic aspects of the tumor microenvironment absent in monolayer systems. In particular, the ability to spatiotemporally control cell placement within ex vivo 3D systems has enabled the study of tumor-stroma interactions. Furthermore, by regulating biomechanical stimuli, one can reveal how biophysical cues affect stromal cell phenotype and how their phenotype impacts tumor drug sensitivity. Both tumor architecture and shear force have profound effects on Ewing sarcoma (ES) cell behavior and are known to elicit ligand-mediated activation of the insulin-like growth factor-1 receptor (IGF-1R), thereby mediating resistance of ES cells to IGF-1R inhibitors. Here, we demonstrate that these same biophysical cues-modeled by coculturing ES cells and mesenchymal stem cells (MSCs) in 3D scaffolds within a flow perfusion bioreactor-activate interleukin-6 and transcription factor Stat3. Critically, an active Stat3 pathway drastically alters the equilibrium of IGF-1R-targeted ligands (IGF-1) and antagonists (IGFBP-3) secreted by MSCs. To elucidate how this might promote ES tumor growth under physiological shear-stress conditions, ES cells and MSCs were co-cultured by using a flow perfusion bioreactor at varying ratios that simulate a wide range of native MSC abundance. Our results indicate that ES cells and MSCs stimulate each other's growth. Co-targeting IGF-1R and Stat3 enhanced antineoplastic activity over monotherapy treatment. Although this discovery requires prospective clinical validation in patients, it reveals the power of employing a more physiological tissue-engineered 3D tumor model to elucidate how tumor cells co-opt stromal cells to acquire drug resistance.

摘要

三维(3D)肿瘤模型因其能够模拟单层系统中不存在的肿瘤微环境的各个方面而在研究界越来越受到关注。特别是,在体外3D系统中时空控制细胞放置的能力使得对肿瘤-基质相互作用的研究成为可能。此外,通过调节生物力学刺激,可以揭示生物物理线索如何影响基质细胞表型以及它们的表型如何影响肿瘤药物敏感性。肿瘤结构和剪切力对尤因肉瘤(ES)细胞行为都有深远影响,并且已知会引发胰岛素样生长因子-1受体(IGF-1R)的配体介导的激活,从而介导ES细胞对IGF-1R抑制剂的抗性。在这里,我们证明,通过在流动灌注生物反应器中的3D支架中共培养ES细胞和间充质干细胞(MSC)所模拟的这些相同的生物物理线索,激活了白细胞介素-6和转录因子Stat3。至关重要的是,活跃的Stat3信号通路极大地改变了MSC分泌的IGF-1R靶向配体(IGF-1)和拮抗剂(IGFBP-3)的平衡。为了阐明这在生理剪切应力条件下如何促进ES肿瘤生长,使用流动灌注生物反应器以模拟广泛的天然MSC丰度的不同比例共培养ES细胞和MSC。我们的结果表明,ES细胞和MSC相互刺激生长。联合靶向IGF-1R和Stat3比单一疗法治疗增强了抗肿瘤活性。尽管这一发现需要在患者中进行前瞻性临床验证,但它揭示了采用更具生理性的组织工程3D肿瘤模型来阐明肿瘤细胞如何利用基质细胞获得耐药性的作用。

相似文献

引用本文的文献

2
3D Models of Sarcomas: The Next-generation Tool for Personalized Medicine.肉瘤的3D模型:个性化医疗的下一代工具。
Phenomics. 2023 Oct 4;4(2):171-186. doi: 10.1007/s43657-023-00111-3. eCollection 2024 Apr.
7
Modeling neoplastic disease with spheroids and organoids.用球体和类器官模拟肿瘤疾病。
J Hematol Oncol. 2020 Jul 16;13(1):97. doi: 10.1186/s13045-020-00931-0.
8
Modeling the Tumor Microenvironment and Pathogenic Signaling in Bone Sarcoma.骨肉瘤肿瘤微环境与致病信号建模。
Tissue Eng Part B Rev. 2020 Jun;26(3):249-271. doi: 10.1089/ten.teb.2019.0302. Epub 2020 Feb 14.

本文引用的文献

7
Bioengineered human tumor within a bone niche.骨龛内的生物工程化人类肿瘤。
Biomaterials. 2014 Jul;35(22):5785-94. doi: 10.1016/j.biomaterials.2014.03.081. Epub 2014 Apr 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验