Suppr超能文献

一种用于数值优化的带 Levy 飞行的多宇宙优化器及其在片上网络测试调度中的应用。

A Multi-Verse Optimizer with Levy Flights for Numerical Optimization and Its Application in Test Scheduling for Network-on-Chip.

作者信息

Hu Cong, Li Zhi, Zhou Tian, Zhu Aijun, Xu Chuanpei

机构信息

School of Mechano-Electronic Engineering, Xidian University, Xi'an, Shaanxi, China.

School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi, China.

出版信息

PLoS One. 2016 Dec 7;11(12):e0167341. doi: 10.1371/journal.pone.0167341. eCollection 2016.

Abstract

We propose a new meta-heuristic algorithm named Levy flights multi-verse optimizer (LFMVO), which incorporates Levy flights into multi-verse optimizer (MVO) algorithm to solve numerical and engineering optimization problems. The Original MVO easily falls into stagnation when wormholes stochastically re-span a number of universes (solutions) around the best universe achieved over the course of iterations. Since Levy flights are superior in exploring unknown, large-scale search space, they are integrated into the previous best universe to force MVO out of stagnation. We test this method on three sets of 23 well-known benchmark test functions and an NP complete problem of test scheduling for Network-on-Chip (NoC). Experimental results prove that the proposed LFMVO is more competitive than its peers in both the quality of the resulting solutions and convergence speed.

摘要

我们提出了一种名为 Levy 飞行多宇宙优化器(LFMVO)的新型元启发式算法,该算法将 Levy 飞行融入多宇宙优化器(MVO)算法中,以解决数值和工程优化问题。原始的 MVO 在迭代过程中,当虫洞随机重新跨越围绕最佳宇宙所获得的多个宇宙(解)时,很容易陷入停滞。由于 Levy 飞行在探索未知的大规模搜索空间方面具有优势,因此将它们集成到先前的最佳宇宙中,以迫使 MVO 摆脱停滞。我们在三组共 23 个著名的基准测试函数以及片上网络(NoC)的测试调度这一 NP 完全问题上测试了该方法。实验结果证明,所提出的 LFMVO 在所得解的质量和收敛速度方面都比同类算法更具竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f17b/5142788/2ac1c9fcf6e5/pone.0167341.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验