Suppr超能文献

基于灰狼优化算法和烟花算法的新型混合算法。

A Novel Hybrid Algorithm Based on Grey Wolf Optimizer and Fireworks Algorithm.

机构信息

School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China.

出版信息

Sensors (Basel). 2020 Apr 10;20(7):2147. doi: 10.3390/s20072147.

Abstract

Grey wolf optimizer (GWO) is a meta-heuristic algorithm inspired by the hierarchy of grey wolves (Canis lupus). Fireworks algorithm (FWA) is a nature-inspired optimization method mimicking the explosion process of fireworks for optimization problems. Both of them have a strong optimal search capability. However, in some cases, GWO converges to the local optimum and FWA converges slowly. In this paper, a new hybrid algorithm (named as FWGWO) is proposed, which fuses the advantages of these two algorithms to achieve global optima effectively. The proposed algorithm combines the exploration ability of the fireworks algorithm with the exploitation ability of the grey wolf optimizer (GWO) by setting a balance coefficient. In order to test the competence of the proposed hybrid FWGWO, 16 well-known benchmark functions having a wide range of dimensions and varied complexities are used in this paper. The results of the proposed FWGWO are compared to nine other algorithms, including the standard FWA, the native GWO, enhanced grey wolf optimizer (EGWO), and augmented grey wolf optimizer (AGWO). The experimental results show that the FWGWO effectively improves the global optimal search capability and convergence speed of the GWO and FWA.

摘要

灰狼优化算法(GWO)是一种受灰狼(Canis lupus)等级制度启发的元启发式算法。烟花算法(FWA)是一种受烟花爆炸过程启发的优化方法,用于解决优化问题。它们都具有很强的最优搜索能力。然而,在某些情况下,GWO 会收敛到局部最优,而 FWA 则收敛缓慢。本文提出了一种新的混合算法(称为 FWGWO),它融合了这两种算法的优势,有效地实现了全局最优。该算法通过设置平衡系数,将烟花算法的探索能力与灰狼优化算法(GWO)的开发能力相结合。为了测试所提出的混合 FWGWO 的性能,本文使用了 16 个具有广泛维度和不同复杂度的著名基准函数进行测试。将所提出的 FWGWO 的结果与其他 9 种算法进行比较,包括标准的 FWA、原生的 GWO、增强型灰狼优化算法(EGWO)和改进型灰狼优化算法(AGWO)。实验结果表明,FWGWO 有效地提高了 GWO 和 FWA 的全局最优搜索能力和收敛速度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d1e/7181066/4f00afbd6d11/sensors-20-02147-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验