School of computer science, Yangtze University, Jingzhou 434000, China.
School of computer engineering, Jingchu University of Technology, Jingmen 448000, China.
Math Biosci Eng. 2022 Jul 21;19(10):10275-10315. doi: 10.3934/mbe.2022481.
The intelligent clonal optimizer (ICO) is a new evolutionary algorithm, which adopts a new cloning and selection mechanism. In order to improve the performance of the algorithm, quasi-opposition-based and quasi-reflection-based learning strategy is applied according to the transition information from exploration to exploitation of ICO to speed up the convergence speed of ICO and enhance the diversity of the population. Furthermore, to avoid the stagnation of the optimal value update, an adaptive parameter method is designed. When the update of the optimal value falls into stagnation, it can adjust the parameter of controlling the exploration and exploitation in ICO to enhance the convergence rate of ICO and accuracy of the solution. At last, an improved intelligent chaotic clonal optimizer (IICO) based on adaptive parameter strategy is proposed. In this paper, twenty-seven benchmark functions, eight CEC 2104 test functions and three engineering optimization problems are used to verify the numerical optimization ability of IICO. Results of the proposed IICO are compared to ten similar meta-heuristic algorithms. The obtained results confirmed that the IICO exhibits competitive performance in convergence rate and accurate convergence.
智能克隆优化器(ICO)是一种新的进化算法,它采用了一种新的克隆和选择机制。为了提高算法的性能,根据 ICO 从探索到开发的过渡信息,应用了准反对称和准反射学习策略,以加快 ICO 的收敛速度并增强种群的多样性。此外,为了避免最优值更新的停滞,设计了一种自适应参数方法。当最优值的更新陷入停滞时,它可以调整控制 ICO 中探索和开发的参数,以提高 ICO 的收敛速度和解决方案的准确性。最后,提出了一种基于自适应参数策略的改进智能混沌克隆优化器(IICO)。本文采用了二十七个基准函数、八个 CEC 2104 测试函数和三个工程优化问题来验证 IICO 的数值优化能力。将所提出的 IICO 的结果与十种类似的元启发式算法进行了比较。得到的结果证实了 IICO 在收敛速度和准确收敛方面具有竞争性能。