Roth Christian J, Becher Tobias, Frerichs Inéz, Weiler Norbert, Wall Wolfgang A
Institute for Computational Mechanics, Technical University of Munich, Munich, Germany; and.
Department of Anesthesiology and Intensive Care Medicine, Christian Albrechts University, Kiel, Germany.
J Appl Physiol (1985). 2017 Apr 1;122(4):855-867. doi: 10.1152/japplphysiol.00236.2016. Epub 2016 Dec 8.
Providing optimal personalized mechanical ventilation for patients with acute or chronic respiratory failure is still a challenge within a clinical setting for each case anew. In this article, we integrate electrical impedance tomography (EIT) monitoring into a powerful patient-specific computational lung model to create an approach for personalizing protective ventilatory treatment. The underlying computational lung model is based on a single computed tomography scan and able to predict global airflow quantities, as well as local tissue aeration and strains for any ventilation maneuver. For validation, a novel "virtual EIT" module is added to our computational lung model, allowing to simulate EIT images based on the patient's thorax geometry and the results of our numerically predicted tissue aeration. Clinically measured EIT images are not used to calibrate the computational model. Thus they provide an independent method to validate the computational predictions at high temporal resolution. The performance of this coupling approach has been tested in an example patient with acute respiratory distress syndrome. The method shows good agreement between computationally predicted and clinically measured airflow data and EIT images. These results imply that the proposed framework can be used for numerical prediction of patient-specific responses to certain therapeutic measures before applying them to an actual patient. In the long run, definition of patient-specific optimal ventilation protocols might be assisted by computational modeling. In this work, we present a patient-specific computational lung model that is able to predict global and local ventilatory quantities for a given patient and any selected ventilation protocol. For the first time, such a predictive lung model is equipped with a virtual electrical impedance tomography module allowing real-time validation of the computed results with the patient measurements. First promising results obtained in an acute respiratory distress syndrome patient show the potential of this approach for personalized computationally guided optimization of mechanical ventilation in future.
为急性或慢性呼吸衰竭患者提供最佳的个性化机械通气在临床环境中对每个病例而言仍然是一项新的挑战。在本文中,我们将电阻抗断层扫描(EIT)监测集成到一个强大的针对患者的计算肺模型中,以创建一种个性化保护性通气治疗的方法。基础的计算肺模型基于单次计算机断层扫描,能够预测任何通气操作的全局气流量以及局部组织通气和应变。为了进行验证,一个新颖的“虚拟EIT”模块被添加到我们的计算肺模型中,允许基于患者的胸部几何形状和我们数值预测的组织通气结果来模拟EIT图像。临床测量的EIT图像不用于校准计算模型。因此,它们提供了一种以高时间分辨率验证计算预测的独立方法。这种耦合方法的性能已在一名急性呼吸窘迫综合征患者的实例中进行了测试。该方法在计算预测的和临床测量的气流数据以及EIT图像之间显示出良好的一致性。这些结果意味着所提出的框架可用于在将某些治疗措施应用于实际患者之前对患者特异性反应进行数值预测。从长远来看,计算建模可能有助于定义患者特异性的最佳通气方案。在这项工作中,我们提出了一个针对患者的计算肺模型,该模型能够预测给定患者和任何选定通气方案的全局和局部通气量。首次,这样一个预测性肺模型配备了一个虚拟电阻抗断层扫描模块,允许用患者测量值对计算结果进行实时验证。在一名急性呼吸窘迫综合征患者中获得的初步有希望的结果显示了这种方法在未来个性化计算引导的机械通气优化中的潜力。