Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
J R Soc Interface. 2022 Jun;19(191):20220062. doi: 10.1098/rsif.2022.0062. Epub 2022 Jun 8.
Computational modelling of the lungs is an active field of study that integrates computational advances with lung biophysics, biomechanics, physiology and medical imaging to promote individualized diagnosis, prognosis and therapy evaluation in lung diseases. The complex and hierarchical architecture of the lung offers a rich, but also challenging, research area demanding a cross-scale understanding of lung mechanics and advanced computational tools to effectively model lung biomechanics in both health and disease. Various approaches have been proposed to study different aspects of respiration, ranging from compartmental to discrete micromechanical and continuum representations of the lungs. This article reviews several developments in computational lung modelling and how they are integrated with preclinical and clinical data. We begin with a description of lung anatomy and how different tissue components across multiple length scales affect lung mechanics at the organ level. We then review common physiological and imaging data acquisition methods used to inform modelling efforts. Building on these reviews, we next present a selection of model-based paradigms that integrate data acquisitions with modelling to understand, simulate and predict lung dynamics in health and disease. Finally, we highlight possible future directions where computational modelling can improve our understanding of the structure-function relationship in the lung.
肺部计算建模是一个活跃的研究领域,它将计算进展与肺部生物物理学、生物力学、生理学和医学成像相结合,以促进肺部疾病的个体化诊断、预后和治疗评估。肺部的复杂和分层结构提供了一个丰富但也具有挑战性的研究领域,需要跨尺度理解肺部力学和先进的计算工具,以有效地在健康和疾病中模拟肺部生物力学。已经提出了各种方法来研究呼吸的不同方面,从肺部的分区到离散的微观力学和连续体表示。本文综述了计算肺部建模的几个发展,以及它们如何与临床前和临床数据相结合。我们首先描述了肺部解剖结构,以及不同组织成分在多个长度尺度上如何影响器官水平的肺部力学。然后,我们回顾了用于为建模工作提供信息的常见生理和成像数据采集方法。在此基础上,我们接下来介绍了一些基于模型的范例,这些范例将数据采集与建模相结合,以了解、模拟和预测健康和疾病状态下的肺部动力学。最后,我们强调了计算建模可以在哪些方面提高我们对肺部结构-功能关系的理解的可能的未来方向。
J R Soc Interface. 2022-6
2025-1
Cochrane Database Syst Rev. 2022-1-17
Cochrane Database Syst Rev. 2022-10-4
Autism Adulthood. 2024-12-2
Cochrane Database Syst Rev. 2016-10-4
2025-1
Trends Biotechnol. 2025-7
NPJ Syst Biol Appl. 2025-4-18
Front Pharmacol. 2025-1-13
J R Soc Interface. 2024-11
Sci Rep. 2022-3-31
Pneumonia (Nathan). 2021-12-6
Front Physiol. 2021-10-1
Bioengineering (Basel). 2021-5-7
J Allergy Clin Immunol Pract. 2021-6