文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

计算呼吸医学中的肺部建模。

Computational lung modelling in respiratory medicine.

机构信息

Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.

Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

J R Soc Interface. 2022 Jun;19(191):20220062. doi: 10.1098/rsif.2022.0062. Epub 2022 Jun 8.


DOI:10.1098/rsif.2022.0062
PMID:35673857
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9174712/
Abstract

Computational modelling of the lungs is an active field of study that integrates computational advances with lung biophysics, biomechanics, physiology and medical imaging to promote individualized diagnosis, prognosis and therapy evaluation in lung diseases. The complex and hierarchical architecture of the lung offers a rich, but also challenging, research area demanding a cross-scale understanding of lung mechanics and advanced computational tools to effectively model lung biomechanics in both health and disease. Various approaches have been proposed to study different aspects of respiration, ranging from compartmental to discrete micromechanical and continuum representations of the lungs. This article reviews several developments in computational lung modelling and how they are integrated with preclinical and clinical data. We begin with a description of lung anatomy and how different tissue components across multiple length scales affect lung mechanics at the organ level. We then review common physiological and imaging data acquisition methods used to inform modelling efforts. Building on these reviews, we next present a selection of model-based paradigms that integrate data acquisitions with modelling to understand, simulate and predict lung dynamics in health and disease. Finally, we highlight possible future directions where computational modelling can improve our understanding of the structure-function relationship in the lung.

摘要

肺部计算建模是一个活跃的研究领域,它将计算进展与肺部生物物理学、生物力学、生理学和医学成像相结合,以促进肺部疾病的个体化诊断、预后和治疗评估。肺部的复杂和分层结构提供了一个丰富但也具有挑战性的研究领域,需要跨尺度理解肺部力学和先进的计算工具,以有效地在健康和疾病中模拟肺部生物力学。已经提出了各种方法来研究呼吸的不同方面,从肺部的分区到离散的微观力学和连续体表示。本文综述了计算肺部建模的几个发展,以及它们如何与临床前和临床数据相结合。我们首先描述了肺部解剖结构,以及不同组织成分在多个长度尺度上如何影响器官水平的肺部力学。然后,我们回顾了用于为建模工作提供信息的常见生理和成像数据采集方法。在此基础上,我们接下来介绍了一些基于模型的范例,这些范例将数据采集与建模相结合,以了解、模拟和预测健康和疾病状态下的肺部动力学。最后,我们强调了计算建模可以在哪些方面提高我们对肺部结构-功能关系的理解的可能的未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a8/9174712/8b16a73ac96c/rsif20220062f06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a8/9174712/5704c462a2e7/rsif20220062f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a8/9174712/93d12bf5cf1b/rsif20220062f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a8/9174712/d3990559634d/rsif20220062f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a8/9174712/853b680a21c3/rsif20220062f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a8/9174712/08c599945338/rsif20220062f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a8/9174712/8b16a73ac96c/rsif20220062f06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a8/9174712/5704c462a2e7/rsif20220062f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a8/9174712/93d12bf5cf1b/rsif20220062f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a8/9174712/d3990559634d/rsif20220062f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a8/9174712/853b680a21c3/rsif20220062f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a8/9174712/08c599945338/rsif20220062f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50a8/9174712/8b16a73ac96c/rsif20220062f06.jpg

相似文献

[1]
Computational lung modelling in respiratory medicine.

J R Soc Interface. 2022-6

[2]
Short-Term Memory Impairment

2025-1

[3]
Measures implemented in the school setting to contain the COVID-19 pandemic.

Cochrane Database Syst Rev. 2022-1-17

[4]
Survivor, family and professional experiences of psychosocial interventions for sexual abuse and violence: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2022-10-4

[5]
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.

Respir Res. 2024-12-21

[6]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[7]
How lived experiences of illness trajectories, burdens of treatment, and social inequalities shape service user and caregiver participation in health and social care: a theory-informed qualitative evidence synthesis.

Health Soc Care Deliv Res. 2025-6

[8]
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.

Autism Adulthood. 2024-12-2

[9]
Factors that impact on the use of mechanical ventilation weaning protocols in critically ill adults and children: a qualitative evidence-synthesis.

Cochrane Database Syst Rev. 2016-10-4

[10]
Ventilator Management

2025-1

引用本文的文献

[1]
Evidence Generation for a Host-Response Biosignature of Respiratory Disease.

Viruses. 2025-7-2

[2]
A ventilated perfused lung model platform to dissect the response of the lungs to viral infection.

Trends Biotechnol. 2025-7

[3]
A multidisciplinary approach towards modeling of a virtual human lung.

NPJ Syst Biol Appl. 2025-4-18

[4]
An image-based biophysical model of the lung to investigate the effect of pulmonary surfactant on lung function.

bioRxiv. 2025-2-20

[5]
A new computational framework for simulating airway resistance, fraction of exhaled nitric oxide, and diffusing capacity for nitric oxide.

PLoS One. 2025-1-30

[6]
Editorial: Model organisms in respiratory pharmacology 2023.

Front Pharmacol. 2025-1-13

[7]
Towards constructing a generalized structural 3D breathing human lung model based on experimental volumes, pressures, and strains.

PLoS Comput Biol. 2025-1-13

[8]
Robust thoracic CT image registration with environmental adaptability using dynamic Welsch's function and hierarchical structure-awareness strategy.

Quant Imaging Med Surg. 2024-12-5

[9]
Personalized model for radiation-induced pulmonary fibrosis.

J R Soc Interface. 2024-11

[10]
A Critical Analysis of the CFD-DEM Simulation of Pharmaceutical Aerosols Deposition in Upper Intra-Thoracic Airways: Considerations on Aerosol Transport and Deposition.

Pharmaceutics. 2024-8-24

本文引用的文献

[1]
A machine learning model to estimate myocardial stiffness from EDPVR.

Sci Rep. 2022-3-31

[2]
Acute respiratory distress syndrome in COVID-19: possible mechanisms and therapeutic management.

Pneumonia (Nathan). 2021-12-6

[3]
A Damaged-Informed Lung Ventilator Model for Ventilator Waveforms.

Front Physiol. 2021-10-1

[4]
Inflation instability in the lung: an analytical model of a thick-walled alveolus with wavy fibres under large deformations.

J R Soc Interface. 2021-10

[5]
Constrained Mixture Models of Soft Tissue Growth and Remodeling - Twenty Years After.

J Elast. 2021-8

[6]
Mechanical Ventilator Parameter Estimation for Lung Health through Machine Learning.

Bioengineering (Basel). 2021-5-7

[7]
Artificial Intelligence/Machine Learning in Respiratory Medicine and Potential Role in Asthma and COPD Diagnosis.

J Allergy Clin Immunol Pract. 2021-6

[8]
Imaging atelectrauma in Ventilator-Induced Lung Injury using 4D X-ray microscopy.

Sci Rep. 2021-2-19

[9]
Novel Mechanical Strain Characterization of Ventilated Porcine and Murine Lung using Digital Image Correlation.

Front Physiol. 2020-12-4

[10]
Introducing a Custom-Designed Volume-Pressure Machine for Novel Measurements of Whole Lung Organ Viscoelasticity and Direct Comparisons Between Positive- and Negative-Pressure Ventilation.

Front Bioeng Biotechnol. 2020-10-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索