Department of Biomedical Engineering, Graduate School, Kyung Hee University, Yongin, South Korea.
Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, South Korea.
Biomed Eng Online. 2019 Jul 25;18(1):83. doi: 10.1186/s12938-019-0701-y.
Electrical impedance tomography (EIT) has been used for functional lung imaging of regional air distributions during mechanical ventilation in intensive care units (ICU). From numerous clinical and animal studies focusing on specific lung functions, a consensus about how to use the EIT technique has been formed lately. We present an integrated EIT system implementing the functions proposed in the consensus. The integrated EIT system could improve the usefulness when monitoring of mechanical ventilation for lung protection so that it could facilitate the clinical acceptance of this new technique.
Using a custom-designed 16-channel EIT system with 50 frames/s temporal resolution, the integrated EIT system software was developed to implement five functional images and six EIT measures that can be observed in real-time screen view and analysis screen view mode, respectively. We evaluated the performance of the integrated EIT system with ten mechanically ventilated porcine subjects in normal and disease models.
Quantitative and simultaneous imaging of tidal volume (TV), end-expiratory lung volume change ([Formula: see text]EELV), compliance, ventilation delay, and overdistension/collapse images were performed. Clinically useful parameters were successfully extracted including anterior/posterior ventilation ratio (A/P ratio), center of ventilation ([Formula: see text], [Formula: see text]), global inhomogeneity (GI), coefficient of variation (CV), ventilation delay and percentile of overdistension/collapse. The integrated EIT system was demonstrated to suggest an optimal positive end-expiratory pressure (PEEP) for lung protective ventilation in normal and in the disease model of an acute injury. Optimal PEEP for normal and disease model was 2.3 and [Formula: see text], respectively.
The proposed integrated approach for functional lung ventilation imaging could facilitate clinical acceptance of the bedside EIT imaging method in ICU. Future clinical studies of applying the proposed methods to human subjects are needed to show the clinical significance of the method for lung protective mechanical ventilation and mechanical ventilator weaning in ICU.
在重症监护病房(ICU)中,电阻抗断层成像(EIT)已被用于机械通气时区域性肺通气功能的功能成像。最近,针对特定肺功能的大量临床和动物研究已经形成了使用 EIT 技术的共识。我们提出了一种集成的 EIT 系统,该系统实现了共识中提出的功能。集成的 EIT 系统可以改善用于肺保护的机械通气监测的有用性,从而促进该新技术的临床应用。
使用具有 50 帧/秒时间分辨率的定制设计的 16 通道 EIT 系统,开发了集成的 EIT 系统软件,以分别在实时屏幕视图和分析屏幕视图模式下实现 5 种功能图像和 6 种 EIT 测量。我们在正常和疾病模型中使用十只机械通气的猪进行了集成的 EIT 系统性能评估。
进行了潮气量(TV)、呼气末肺容积变化([Formula: see text]EELV)、顺应性、通气延迟和过度膨胀/塌陷图像的定量和同时成像。成功提取了临床有用的参数,包括前/后通气比(A/P 比)、通气中心 ([Formula: see text],[Formula: see text])、整体不均匀性(GI)、变异系数(CV)、通气延迟和过度膨胀/塌陷的百分比。该集成的 EIT 系统表明,在正常和急性损伤模型中,建议使用最佳的呼气末正压(PEEP)进行肺保护性通气。正常和疾病模型的最佳 PEEP 分别为 2.3 和 [Formula: see text]。
提出的功能性肺通气成像综合方法可以促进 ICU 床边 EIT 成像方法的临床接受度。需要进行未来的临床研究,将所提出的方法应用于人体,以显示该方法在 ICU 中对肺保护性机械通气和机械通气撤机的临床意义。