Chen Ke, Wu Shiwen, Zhu Lu, Zhang Chengde, Xiang Wensheng, Deng Zixin, Ikeda Haruo, Cane David E, Zhu Dongqing
The Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), Wuhan University , Wuhan, Hubei Province 430071, China.
School of Life Science, Northeast Agricultural University , Harbin, Heilongjiang Province 150030, China.
Biochemistry. 2016 Dec 6;55(48):6696-6704. doi: 10.1021/acs.biochem.6b01040. Epub 2016 Nov 23.
In the biosynthesis of pentalenolactone (1), PenE and PntE, orthologous proteins from Streptomyces exfoliatus and S. arenae, respectively, catalyze the flavin-dependent Baeyer-Villiger oxidation of 1-deoxy-11-oxopentalenic acid (4) to the lactone pentalenolactone D (5), in which the less-substituted methylene carbon has migrated. By contrast, the paralogous PtlE enzyme from S. avermitilis catalyzes the oxidation of 4 to neopentalenolactone D (6), in which the more substituted methane substitution has undergone migration. We report the design and analysis of 13 single and multiple mutants of PntE mutants to identify the key amino acids that contribute to the regiospecificity of these two classes of Baeyer-Villiger monooxygenases. The L185S mutation in PntE reversed the observed regiospecificity of PntE such that all recombinant PntE mutants harboring this L185S mutation acquired the characteristic regiospecificity of PtlE, catalyzing the conversion of 4 to 6 as the major product. The recombinant PntE mutant harboring R484L exhibited reduced regiospecificity, generating a mixture of lactones containing more than 17% of 6. These in vitro results were corroborated by analysis of the complementation of the S. avermitilis ΔptlED double deletion mutant with pntE mutants, such that pntE mutants harboring L185S produced 6 as the major product, whereas complemention of the ΔptlED deletion mutant with pntE mutants carrying the R484L mutation gave 6 as more than 33% of the total lactone product mixture.
在戊内酯(1)的生物合成过程中,分别来自脱落链霉菌和沙雷链霉菌的直系同源蛋白PenE和PntE催化黄素依赖性的1-脱氧-11-氧代戊烯酸(4)的拜耳-维利格氧化反应生成内酯戊内酯D(5),其中取代较少的亚甲基碳发生了迁移。相比之下,来自阿维链霉菌的旁系同源PtlE酶催化4氧化生成新戊内酯D(6),其中取代较多的甲基发生了迁移。我们报告了PntE突变体的13个单突变体和多突变体的设计与分析,以确定有助于这两类拜耳-维利格单加氧酶区域特异性的关键氨基酸。PntE中的L185S突变逆转了观察到的PntE的区域特异性,使得所有携带该L185S突变的重组PntE突变体都获得了PtlE的特征区域特异性,催化4转化为6作为主要产物。携带R484L的重组PntE突变体表现出降低的区域特异性,生成含有超过17%的6的内酯混合物。通过用pntE突变体对阿维链霉菌ΔptlED双缺失突变体进行互补分析,证实了这些体外结果,使得携带L185S的pntE突变体产生6作为主要产物,而用携带R484L突变的pntE突变体对ΔptlED缺失突变体进行互补时,6占总内酯产物混合物的33%以上。