Manini Paola, Margari Piero, Pomelli Christian, Franchi Paola, Gentile Gennaro, Napolitano Alessandra, Valgimigli Luca, Chiappe Cinzia, Ball Vincent, d'Ischia Marco
Department of Chemical Sciences, University of Naples Federico II , via Cintia 4, I-80126 Napoli, Italy.
Department of Pharmacy, University of Pisa , via Bonanno Pisano 6, I-56126 Pisa, Italy.
J Phys Chem B. 2016 Nov 23;120(46):11942-11950. doi: 10.1021/acs.jpcb.6b08835. Epub 2016 Nov 15.
Despite the growing scientific and technological relevance of polydopamine (PDA), a eumelanin-like adhesive material widely used for surface functionalization and coating, knowledge of its structural and physicochemical properties, including in particular the origin of paramagnetic behavior, is still far from being complete. Herein, we disclose the unique ability of ionic liquids (ILs) to disassemble PDA, either as a suspension or as a thin film, up to the nanoscale, and to establish specific interactions with the free radical centers exposed by deaggregation of potential investigative value. Immersion of PDA-coated glasses into four different ILs ([CCim][(CHO)HPO], [CCim][(CHO)CHPO], [CCim][(CHO)PO], [N][C]) at room temperature caused the fast and virtually complete removal of the coating as determined by UV-visible spectroscopy and scanning electron microscopy (SEM). Transmission electron microscopy (TEM) analysis of the colored supernatants from PDA suspensions in ILs revealed the presence of nanostructures not exceeding 50 nm in diameter. Electron paramagnetic resonance (EPR) analysis indicated profound IL-dependent modifications in signal intensity, line-width, and g-factor values of PDA. These differences were interpreted in terms of a partial conversion of C-centered radicals into O-centered semiquinone-type components following destacking and interaction with the anion component in ILs. The discovery of ILs as a powerful tool to disassemble PDA under mild conditions provides a new entry both to detailed investigations of this biopolymer on the nanoscale and to mild removal of coatings from functionalized surfaces, greatly expanding the scope of PDA-based surface functionalization strategies.
尽管聚多巴胺(PDA)作为一种广泛用于表面功能化和涂层的类真黑素粘性材料,在科学技术方面的相关性日益增加,但其结构和物理化学性质,尤其是顺磁行为的起源,目前仍远未完全明晰。在此,我们揭示了离子液体(ILs)独特的能力,即能将悬浮液或薄膜形式的PDA分解至纳米尺度,并与因解聚而暴露的具有潜在研究价值的自由基中心建立特定相互作用。在室温下,将涂有PDA的玻璃浸入四种不同的离子液体([CCim][(CHO)HPO]、[CCim][(CHO)CHPO]、[CCim][(CHO)PO]、[N][C])中,通过紫外可见光谱和扫描电子显微镜(SEM)测定,涂层能快速且几乎完全被去除。对离子液体中PDA悬浮液的有色上清液进行透射电子显微镜(TEM)分析,结果显示存在直径不超过50 nm的纳米结构。电子顺磁共振(EPR)分析表明,PDA的信号强度、线宽和g因子值存在显著的离子液体依赖性变化。这些差异被解释为,在与离子液体中的阴离子成分解堆叠并相互作用后,以C为中心的自由基部分转化为以O为中心的半醌型成分。离子液体作为一种在温和条件下分解PDA的强大工具,这一发现为在纳米尺度上详细研究这种生物聚合物以及从功能化表面温和去除涂层提供了新途径,极大地扩展了基于PDA的表面功能化策略范围。