Suppr超能文献

受蛋白质晶体学关键评估(CAPRI)推动,ClusPro服务器新增功能。

New additions to the ClusPro server motivated by CAPRI.

作者信息

Vajda Sandor, Yueh Christine, Beglov Dmitri, Bohnuud Tanggis, Mottarella Scott E, Xia Bing, Hall David R, Kozakov Dima

机构信息

Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215.

Department of Chemistry, Boston University, Boston, Massachusetts, 02215.

出版信息

Proteins. 2017 Mar;85(3):435-444. doi: 10.1002/prot.25219. Epub 2017 Jan 5.

Abstract

The heavily used protein-protein docking server ClusPro performs three computational steps as follows: (1) rigid body docking, (2) RMSD based clustering of the 1000 lowest energy structures, and (3) the removal of steric clashes by energy minimization. In response to challenges encountered in recent CAPRI targets, we added three new options to ClusPro. These are (1) accounting for small angle X-ray scattering data in docking; (2) considering pairwise interaction data as restraints; and (3) enabling discrimination between biological and crystallographic dimers. In addition, we have developed an extremely fast docking algorithm based on 5D rotational manifold FFT, and an algorithm for docking flexible peptides that include known sequence motifs. We feel that these developments will further improve the utility of ClusPro. However, CAPRI emphasized several shortcomings of the current server, including the problem of selecting the right energy parameters among the five options provided, and the problem of selecting the best models among the 10 generated for each parameter set. In addition, results convinced us that further development is needed for docking homology models. Finally, we discuss the difficulties we have encountered when attempting to develop a refinement algorithm that would be computationally efficient enough for inclusion in a heavily used server. Proteins 2017; 85:435-444. © 2016 Wiley Periodicals, Inc.

摘要

频繁使用的蛋白质-蛋白质对接服务器ClusPro执行以下三个计算步骤:(1)刚体对接;(2)基于均方根偏差(RMSD)对1000个最低能量结构进行聚类;(3)通过能量最小化消除空间冲突。针对近期CAPRI靶标中遇到的挑战,我们为ClusPro添加了三个新选项。这些选项包括:(1)对接时考虑小角X射线散射数据;(2)将成对相互作用数据视为约束条件;(3)区分生物学二聚体和晶体学二聚体。此外,我们开发了一种基于5D旋转流形快速傅里叶变换(FFT)的极快速对接算法,以及一种用于对接包含已知序列基序的柔性肽的算法。我们认为这些进展将进一步提高ClusPro的实用性。然而,CAPRI强调了当前服务器的几个缺点,包括在提供的五个选项中选择正确能量参数的问题,以及在为每个参数集生成的10个模型中选择最佳模型的问题。此外,结果让我们确信对接同源模型还需要进一步发展。最后,我们讨论了在尝试开发一种计算效率足够高、可纳入频繁使用的服务器的优化算法时遇到的困难。《蛋白质》2017年;85卷:435 - 444页。© 2016威利期刊公司

相似文献

1
New additions to the ClusPro server motivated by CAPRI.
Proteins. 2017 Mar;85(3):435-444. doi: 10.1002/prot.25219. Epub 2017 Jan 5.
2
Modeling and minimizing CAPRI round 30 symmetrical protein complexes from CASP-11 structural models.
Proteins. 2017 Mar;85(3):463-469. doi: 10.1002/prot.25182. Epub 2016 Oct 24.
6
Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions.
Proteins. 2017 Mar;85(3):424-434. doi: 10.1002/prot.25203. Epub 2016 Dec 2.
7
Performance of ZDOCK and IRAD in CAPRI rounds 28-34.
Proteins. 2017 Mar;85(3):408-416. doi: 10.1002/prot.25186. Epub 2016 Oct 24.
8
ClusPro in rounds 38 to 45 of CAPRI: Toward combining template-based methods with free docking.
Proteins. 2020 Aug;88(8):1082-1090. doi: 10.1002/prot.25887. Epub 2020 Mar 23.
9
The ClusPro web server for protein-protein docking.
Nat Protoc. 2017 Feb;12(2):255-278. doi: 10.1038/nprot.2016.169. Epub 2017 Jan 12.
10
Protein-protein and peptide-protein docking and refinement using ATTRACT in CAPRI.
Proteins. 2017 Mar;85(3):391-398. doi: 10.1002/prot.25196. Epub 2016 Nov 24.

引用本文的文献

4
Inhibiting MARCH5/Mfn2 signaling as an alternative strategy to protect cardiomyocytes from hypoxia-induced mitochondrial dysfunction.
Comput Struct Biotechnol J. 2025 Jul 2;27:3045-3065. doi: 10.1016/j.csbj.2025.07.001. eCollection 2025.
6
Development of a potential vaccine against Capripox virus implementing reverse vaccinology and pan-genomic immunoinformatics.
PLoS One. 2025 Jul 2;20(7):e0326310. doi: 10.1371/journal.pone.0326310. eCollection 2025.
7
Marine-Derived Peptides from as Potential SARS-CoV-2 Mpro Inhibitors: An Approach.
Microorganisms. 2025 May 30;13(6):1271. doi: 10.3390/microorganisms13061271.
8
Evolutionary dynamics of heparan sulfate utilization by SARS-CoV-2.
mBio. 2025 Jun 23:e0130325. doi: 10.1128/mbio.01303-25.
9
10
Immunoinformatic-driven design and evaluation of multi-epitope mRNA vaccine targeting HIV-1 gp120.
Front Immunol. 2025 May 13;16:1480025. doi: 10.3389/fimmu.2025.1480025. eCollection 2025.

本文引用的文献

1
ClusPro-DC: Dimer Classification by the Cluspro Server for Protein-Protein Docking.
J Mol Biol. 2017 Feb 3;429(3):372-381. doi: 10.1016/j.jmb.2016.10.019. Epub 2016 Oct 19.
2
Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds.
Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):E4286-93. doi: 10.1073/pnas.1603929113. Epub 2016 Jul 13.
3
Accounting for pairwise distance restraints in FFT-based protein-protein docking.
Bioinformatics. 2016 Nov 1;32(21):3342-3344. doi: 10.1093/bioinformatics/btw306. Epub 2016 Jun 29.
4
A benchmark testing ground for integrating homology modeling and protein docking.
Proteins. 2017 Jan;85(1):10-16. doi: 10.1002/prot.25063. Epub 2016 Nov 13.
5
Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment.
Proteins. 2016 Sep;84 Suppl 1(Suppl Suppl 1):323-48. doi: 10.1002/prot.25007. Epub 2016 Jun 1.
6
Focused grid-based resampling for protein docking and mapping.
J Comput Chem. 2016 Apr 30;37(11):961-70. doi: 10.1002/jcc.24273. Epub 2016 Feb 2.
7
Energy Minimization on Manifolds for Docking Flexible Molecules.
J Chem Theory Comput. 2015 Mar 10;11(3):1063-76. doi: 10.1021/ct500155t.
8
Accounting for observed small angle X-ray scattering profile in the protein-protein docking server ClusPro.
J Comput Chem. 2015 Jul 30;36(20):1568-72. doi: 10.1002/jcc.23952. Epub 2015 Jun 10.
9
The impact of side-chain packing on protein docking refinement.
J Chem Inf Model. 2015 Apr 27;55(4):872-81. doi: 10.1021/ci500380a. Epub 2015 Mar 24.
10
Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome.
Nature. 2014 Oct 30;514(7524):591-6. doi: 10.1038/nature13890.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验