Youssef Eman G, Elnesr Khaled, Hanora Amro
The Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA 90502, USA.
Biotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt.
Diseases. 2025 Aug 13;13(8):259. doi: 10.3390/diseases13080259.
BACKGROUND: While most strains are harmless members of the gastrointestinal microbiota, certain pathogenic variants can cause severe intestinal and extraintestinal diseases. A notable outbreak of O104:H4, involving both enteroaggregative () and enterohemorrhagic () strains, occurred in Europe, resulting in symptoms ranging from bloody diarrhea to life-threatening colitis and hemolytic uremic syndrome (HUS). Since treatment options remain limited and have changed little over the past 40 years, there is an urgent need for an effective vaccine. Such a vaccine would offer major public health and economic benefits by preventing severe infections and reducing outbreak-related costs. A multiepitope vaccine approach, enabled by advances in immunoinformatics, offers a promising strategy for targeting HUS-causing (O104:H4 and O157:H7 serotypes) with minimal disruption to normal microbiota. This study aimed to design an immunogenic multiepitope vaccine (MEV) construct using bioinformatics and immunoinformatic tools. METHODS AND RESULTS: Comparative proteomic analysis identified 672 proteins unique to O104:H4, excluding proteins shared with the nonpathogenic K-12-MG1655 strain and those shorter than 100 amino acids. Subcellular localization (P-SORTb) identified 17 extracellular or outer membrane proteins. Four proteins were selected as vaccine candidates based on transmembrane domains (TMHMM), antigenicity (VaxiJen), and conservation among EHEC strains. Epitope prediction revealed ten B-cell, four cytotoxic T-cell, and three helper T-cell epitopes. Four MEVs with different adjuvants were designed and assessed for solubility, stability, and antigenicity. Structural refinement (GALAXY) and docking studies confirmed strong interaction with Toll-Like Receptor 4 (TLR4). In silico immune simulations (C-ImmSim) indicated robust humoral and cellular immune responses. In Conclusions, the proposed MEV construct demonstrated promising immunogenicity and warrants further validation in experimental models.
背景:虽然大多数菌株是胃肠道微生物群的无害成员,但某些致病变体可导致严重的肠道和肠道外疾病。欧洲发生了一起引人注目的O104:H4疫情,涉及肠聚集性(EAEC)和肠出血性(EHEC)菌株,导致从血性腹泻到危及生命的结肠炎和溶血尿毒综合征(HUS)等症状。由于治疗选择仍然有限,并且在过去40年中变化不大,因此迫切需要一种有效的疫苗。这种疫苗通过预防严重感染和降低疫情相关成本,将带来重大的公共卫生和经济效益。免疫信息学的进展使多表位疫苗方法成为一种有前途的策略,可靶向导致HUS的EHEC(O104:H4和O157:H7血清型),同时对正常微生物群的干扰最小。本研究旨在使用生物信息学和免疫信息学工具设计一种免疫原性多表位疫苗(MEV)构建体。 方法与结果:比较蛋白质组学分析确定了O104:H4特有的672种蛋白质,不包括与非致病性K-12-MG1655菌株共有的蛋白质以及长度小于100个氨基酸的蛋白质。亚细胞定位(P-SORTb)确定了17种细胞外或外膜蛋白。根据跨膜结构域(TMHMM)、抗原性(VaxiJen)和EHEC菌株之间的保守性,选择了四种蛋白质作为疫苗候选物。表位预测揭示了十个B细胞、四个细胞毒性T细胞和三个辅助性T细胞表位。设计了四种带有不同佐剂的MEV,并评估了其溶解性、稳定性和抗原性。结构优化(GALAXY)和对接研究证实了与Toll样受体4(TLR4)的强相互作用。计算机免疫模拟(C-ImmSim)表明有强大的体液和细胞免疫反应。结论是,所提出的MEV构建体显示出有前景的免疫原性,值得在实验模型中进一步验证。
Int J Med Microbiol. 2025-3
Int J Biol Macromol. 2024-12
Vaccines (Basel). 2024-5-8