Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States.
J Am Chem Soc. 2016 Dec 21;138(50):16466-16477. doi: 10.1021/jacs.6b10535. Epub 2016 Dec 12.
Deoxygenative coupling of CO to value-added C products is challenging and mechanistically poorly understood. Herein, we report a mechanistic investigation into the reductive coupling of CO, which provides new fundamental insights into a multielectron bond-breaking and bond-making transformation. In our studies, the formation of a bis(siloxycarbyne) complex precedes C-O bond cleavage. At -78 °C, over days, C-C coupling occurs without C-O cleavage. However, upon warming to 0 °C, C-O cleavage is observed from this bis(siloxycarbyne) complex. A siloxycarbyne/CO species undergoes C-O bond cleavage at lower temperatures, indicating that monosilylation, and a more electron-rich Mo center, favors deoxygenative pathways. From the bis(siloxycarbyne), isotopic labeling experiments and kinetics are consistent with a mechanism involving unimolecular silyl loss or C-O cleavage as rate-determining steps toward carbide formation. Reduction of Mo(IV) CO adducts of carbide and silylcarbyne species allowed for the spectroscopic detection of reduced silylcarbyne/CO and mixed silylcarbyne/siloxycarbyne complexes, respectively. Upon warming, both of these silylcarbynes undergo C-C bond formation, releasing silylated CO fragments and demonstrating that the multiple bonded terminal Mo≡C moiety is an intermediate on the path to deoxygenated, C-C coupled products. The electronic structures of Mo carbide and carbyne species were investigated quantum mechanically. Overall, the present studies establish the elementary reactions steps by which CO is cleaved and coupled at a single metal site.
脱氧偶联 CO 生成附加值 C 产品具有挑战性,其反应机理也知之甚少。在此,我们报告了对 CO 还原偶联的机理研究,该研究为多电子键断裂和形成转化提供了新的基本见解。在我们的研究中,双(硅氧基卡宾)配合物的形成先于 C-O 键的断裂。在-78°C 下,经过数天时间,在没有 C-O 断裂的情况下发生 C-C 偶联。然而,当温度升高到 0°C 时,从这个双(硅氧基卡宾)配合物中观察到 C-O 断裂。硅氧基卡宾/CO 物种在较低温度下发生 C-O 键断裂,表明单硅化作用和更富电子的 Mo 中心有利于脱氧途径。从双(硅氧基卡宾)中,同位素标记实验和动力学一致表明,涉及单分子硅基消除或 C-O 断裂作为形成碳化物的速率决定步骤的机理。还原碳化钼(IV)CO 加合物和硅基卡宾物种允许分别检测到还原的硅基卡宾/CO 和混合硅基卡宾/硅氧基卡宾配合物的光谱。升温时,这两种硅基卡宾都发生 C-C 键形成,释放硅化 CO 片段,证明了多重键合的末端 Mo≡C 部分是脱氧、C-C 偶联产物路径上的中间体。通过量子力学方法研究了 Mo 碳化物和卡宾物种的电子结构。总的来说,本研究确定了在单个金属位点上 CO 断裂和偶联的基本反应步骤。