Mills Jeremy H, Sheffler William, Ener Maraia E, Almhjell Patrick J, Oberdorfer Gustav, Pereira José Henrique, Parmeggiani Fabio, Sankaran Banumathi, Zwart Peter H, Baker David
Department of Biochemistry and the Institute for Protein Design, University of Washington, Seattle, WA 98195.
School of Molecular Sciences, Arizona State University, Tempe, AZ 85281.
Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):15012-15017. doi: 10.1073/pnas.1600188113. Epub 2016 Dec 8.
Metal-chelating heteroaryl small molecules have found widespread use as building blocks for coordination-driven, self-assembling nanostructures. The metal-chelating noncanonical amino acid (2,2'-bipyridin-5yl)alanine (Bpy-ala) could, in principle, be used to nucleate specific metalloprotein assemblies if introduced into proteins such that one assembly had much lower free energy than all alternatives. Here we describe the use of the Rosetta computational methodology to design a self-assembling homotrimeric protein with [Fe(Bpy-ala)] complexes at the interface between monomers. X-ray crystallographic analysis of the homotrimer showed that the design process had near-atomic-level accuracy: The all-atom rmsd between the design model and crystal structure for the residues at the protein interface is ∼1.4 Å. These results demonstrate that computational protein design together with genetically encoded noncanonical amino acids can be used to drive formation of precisely specified metal-mediated protein assemblies that could find use in a wide range of photophysical applications.
金属螯合杂芳基小分子已被广泛用作配位驱动的自组装纳米结构的构建单元。金属螯合非标准氨基酸(2,2'-联吡啶-5-基)丙氨酸(Bpy-ala)原则上可用于使特定金属蛋白组装体成核,如果将其引入蛋白质中,使得一种组装体的自由能比所有其他选择都低得多。在这里,我们描述了使用Rosetta计算方法来设计一种自组装同三聚体蛋白,在单体之间的界面处具有[Fe(Bpy-ala)]配合物。同三聚体的X射线晶体学分析表明,设计过程具有接近原子水平的准确性:蛋白质界面处残基的设计模型与晶体结构之间的全原子均方根偏差约为1.4 Å。这些结果表明,计算蛋白质设计与基因编码的非标准氨基酸一起可用于驱动精确指定的金属介导的蛋白质组装体的形成,这些组装体可用于广泛的光物理应用。