Suppr超能文献

功能超分子金属蛋白组装体的设计与构建。

Design and Construction of Functional Supramolecular Metalloprotein Assemblies.

机构信息

Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093-0356 , United States.

出版信息

Acc Chem Res. 2019 Feb 19;52(2):345-355. doi: 10.1021/acs.accounts.8b00617. Epub 2019 Jan 30.

Abstract

Nature puts to use only a small fraction of metal ions in the periodic table. Yet, when incorporated into protein scaffolds, this limited set of metal ions carry out innumerable cellular functions and execute essential biochemical transformations such as photochemical HO oxidation, O or CO reduction, and N fixation, highlighting the outsized importance of metalloproteins in biology. Not surprisingly, elucidating the intricate interplay between metal ions and protein structures has been the focus of extensive structural and mechanistic scrutiny over the last several decades. As a result of such top-down efforts, we have gained a reasonably detailed understanding of how metal ions shape protein structures and how protein structures in turn influence metal reactivity. It is fair to say that we now have some idea-and in some cases, a good idea-about how most known metalloproteins function and we possess enough insight to quickly assess the modus operandi of newly discovered ones. However, translating this knowledge into an ability to construct functional metalloproteins from scratch represents a challenge at a whole different level: it is one thing to know how an automobile works; it is another to build one. In our quest to build new metalloproteins, we have taken an original approach in which folded, monomeric proteins are used as ligands or synthons for building supramolecular complexes through metal-mediated self-assembly (MDPSA, Metal-Directed Protein Self-Assembly). The interfaces in the resulting protein superstructures are subsequently tailored with covalent, noncovalent, or additional metal-coordination interactions for stabilization and incorporation of new functionalities (MeTIR, Metal Templated Interface Redesign). In an earlier Account, we had described the proof-of-principle studies for MDPSA and MeTIR, using a four-helix bundle, heme protein cytochrome cb (cyt cb), as a model building block. By the end of those studies, we were able to demonstrate that a tetrameric, Zn-directed cyt cb complex (Zn:M1) could be stabilized through computationally prescribed noncovalent interactions inserted into the nascent protein-protein interfaces. In this Account, we first describe the rationale and motivation for our particular metalloprotein engineering strategy and a brief summary of our earlier work. We then describe the next steps in the "evolution" of bioinorganic complexity on the Zn:M1 scaffold, namely, (a) the generation of a self-standing protein assembly that can stably and selectively bind metal ions, (b) the creation of reactive metal centers within the protein assembly, and (c) the coupling of metal coordination and reactivity to external stimuli through allosteric effects.

摘要

自然界仅利用了元素周期表中一小部分的金属离子。然而,当这些金属离子被整合到蛋白质支架中时,这有限的金属离子集就能够执行无数的细胞功能,并执行必要的生化转化,如光化学 HO 氧化、O 或 CO 还原和 N 固定,这凸显了金属蛋白在生物学中的重要性。毫不奇怪,阐明金属离子与蛋白质结构之间的复杂相互作用一直是过去几十年中广泛的结构和机制研究的焦点。由于这些自上而下的努力,我们已经相当详细地了解了金属离子如何塑造蛋白质结构,以及蛋白质结构反过来如何影响金属反应性。可以说,我们现在对大多数已知的金属蛋白的功能有了一些了解——在某些情况下,了解得很好——并且我们有足够的洞察力来快速评估新发现的金属蛋白的作用方式。然而,将这些知识转化为从头开始构建功能性金属蛋白的能力代表了一个完全不同层次的挑战:了解汽车的工作原理是一回事,制造一辆汽车则是另一回事。在我们构建新的金属蛋白的过程中,我们采用了一种独特的方法,即使用折叠的单体蛋白质作为配体或缩合剂,通过金属介导的自组装(MDPSA,Metal-Directed Protein Self-Assembly)构建超分子复合物。然后,通过共价、非共价或额外的金属配位相互作用来修饰所得蛋白质超结构的界面,以稳定和引入新功能(MeTIR,Metal Templated Interface Redesign)。在之前的一篇报道中,我们描述了 MDPSA 和 MeTIR 的原理验证研究,使用四螺旋束血红素蛋白细胞色素 cb(cyt cb)作为模型构建模块。在这些研究结束时,我们能够证明通过插入新生蛋白质-蛋白质界面的计算规定的非共价相互作用可以稳定四聚体、Zn 导向的 cyt cb 复合物(Zn:M1)。在这篇报道中,我们首先描述了我们特定的金属蛋白工程策略的基本原理和动机,以及我们早期工作的简要总结。然后,我们描述了 Zn:M1 支架上生物无机复杂性“进化”的下一步,即:(a) 生成能够稳定且选择性地结合金属离子的自支撑蛋白质组装体,(b) 在蛋白质组装体中创建反应性金属中心,以及 (c) 通过变构效应将金属配位和反应性与外部刺激耦合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验