Suppr超能文献

海葵中溶细胞孔形成蛋白(刺胞毒素)的进化

Evolution of the Cytolytic Pore-Forming Proteins (Actinoporins) in Sea Anemones.

作者信息

Macrander Jason, Daly Marymegan

机构信息

Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 1315 Kinnear Rd, Columbus, OH 43212, USA.

Department of Biological Sciences, University of North Carolina, Charlotte, 9201 University City Blvd., 373 Woodward Hall, Charlotte, NC 282233, USA.

出版信息

Toxins (Basel). 2016 Dec 8;8(12):368. doi: 10.3390/toxins8120368.

Abstract

Sea anemones (Cnidaria, Anthozoa, and Actiniaria) use toxic peptides to incapacitate and immobilize prey and to deter potential predators. Their toxin arsenal is complex, targeting a variety of functionally important protein complexes and macromolecules involved in cellular homeostasis. Among these, actinoporins are one of the better characterized toxins; these venom proteins form a pore in cellular membranes containing sphingomyelin. We used a combined bioinformatic and phylogenetic approach to investigate how actinoporins have evolved across three superfamilies of sea anemones (Actinioidea, Metridioidea, and Actinostoloidea). Our analysis identified 90 candidate actinoporins across 20 species. We also found clusters of six actinoporin-like genes in five species of sea anemone (, , , , and ); these actinoporin-like sequences resembled actinoporins but have a higher sequence similarity with toxins from fungi, cone snails, and . Comparative analysis of the candidate actinoporins highlighted variable and conserved regions within actinoporins that may pertain to functional variation. Although multiple residues are involved in initiating sphingomyelin recognition and membrane binding, there is a high rate of replacement for a specific tryptophan with leucine (W112L) and other hydrophobic residues. Residues thought to be involved with oligomerization were variable, while those forming the phosphocholine (POC) binding site and the N-terminal region involved with cell membrane penetration were highly conserved.

摘要

海葵(刺胞动物门、珊瑚纲、海葵目)利用毒性肽使猎物丧失能力并 immobilize(此处原文有误,可能是“immobilize”,意为“使固定、使不能移动”),并威慑潜在的捕食者。它们的毒素库很复杂,针对各种参与细胞内稳态的功能重要的蛋白质复合物和大分子。其中,刺胞孔蛋白是特征较为明确的毒素之一;这些毒液蛋白在含有鞘磷脂的细胞膜上形成一个孔。我们采用生物信息学和系统发育相结合的方法,研究刺胞孔蛋白在海葵的三个超科(海葵超科、梅氏海葵超科和刺丝海葵超科)中是如何进化的。我们的分析在20个物种中鉴定出90个候选刺胞孔蛋白。我们还在五种海葵(此处原文物种名缺失)中发现了六个类似刺胞孔蛋白的基因簇;这些类似刺胞孔蛋白的序列类似于刺胞孔蛋白,但与来自真菌、芋螺和(此处原文有误,缺失相关信息)的毒素具有更高的序列相似性。对候选刺胞孔蛋白的比较分析突出了刺胞孔蛋白内可能与功能变异相关的可变区和保守区。尽管多个残基参与启动鞘磷脂识别和膜结合,但特定的色氨酸被亮氨酸(W112L)和其他疏水残基替代的比率很高。被认为与寡聚化有关的残基是可变的,而形成磷酸胆碱(POC)结合位点和参与细胞膜穿透的N端区域则高度保守。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b40c/5198562/1682f5cb8675/toxins-08-00368-g001.jpg

相似文献

1
Evolution of the Cytolytic Pore-Forming Proteins (Actinoporins) in Sea Anemones.
Toxins (Basel). 2016 Dec 8;8(12):368. doi: 10.3390/toxins8120368.
2
Multigene Family of Pore-Forming Toxins from Sea Anemone .
Mar Drugs. 2018 May 24;16(6):183. doi: 10.3390/md16060183.
3
Identification of the two new, functional actinoporins, CJTOX I and CJTOX II, from the deep-sea anemone Cribrinopsis japonica.
Toxicon. 2018 Jun 15;148:40-49. doi: 10.1016/j.toxicon.2018.04.008. Epub 2018 Apr 9.
4
Differential Effect of Membrane Composition on the Pore-Forming Ability of Four Different Sea Anemone Actinoporins.
Biochemistry. 2016 Dec 6;55(48):6630-6641. doi: 10.1021/acs.biochem.6b01007. Epub 2016 Nov 22.
5
The multigene families of actinoporins (part I): Isoforms and genetic structure.
Toxicon. 2015 Sep;103:176-87. doi: 10.1016/j.toxicon.2015.06.028. Epub 2015 Jul 14.
6
New Actinoporins from sea anemone Heteractis crispa: cloning and functional expression.
Biochemistry (Mosc). 2011 Oct;76(10):1131-9. doi: 10.1134/S0006297911100063.
10
Molecular mechanism of pore formation by actinoporins.
Toxicon. 2009 Dec 15;54(8):1125-34. doi: 10.1016/j.toxicon.2009.02.026. Epub 2009 Mar 5.

引用本文的文献

1
An animal toxin-antidote system kills cells by creating a novel cation channel.
PLoS Biol. 2025 May 27;23(5):e3003182. doi: 10.1371/journal.pbio.3003182. eCollection 2025 May.
2
A comparative analysis of toxin gene families across diverse sea anemone species.
Toxicon X. 2025 Mar 7;26:100217. doi: 10.1016/j.toxcx.2025.100217. eCollection 2025 Jun.
4
Mechanism of an animal toxin-antidote system.
bioRxiv. 2024 Jun 13:2024.06.11.598564. doi: 10.1101/2024.06.11.598564.
5
Peptide Toxins from Antarctica: The Nemertean Predator and Scavenger (McIntosh, 1876).
Toxins (Basel). 2024 Apr 30;16(5):209. doi: 10.3390/toxins16050209.
7
Micro and macroevolution of sea anemone venom phenotype.
Nat Commun. 2023 Jan 16;14(1):249. doi: 10.1038/s41467-023-35794-9.
8
First Anti-Inflammatory Peptide AnmTX Sco 9a-1 from the Swimming Sea Anemone .
Biomolecules. 2022 Nov 17;12(11):1705. doi: 10.3390/biom12111705.
10
New Insights into the Toxin Diversity and Antimicrobial Activity of the "Fire Coral" .
Toxins (Basel). 2022 Mar 14;14(3):206. doi: 10.3390/toxins14030206.

本文引用的文献

1
Intragenome Diversity of Gene Families Encoding Toxin-like Proteins in Venomous Animals.
Integr Comp Biol. 2016 Nov;56(5):938-949. doi: 10.1093/icb/icw097. Epub 2016 Aug 19.
2
Tissue-Specific Venom Composition and Differential Gene Expression in Sea Anemones.
Genome Biol Evol. 2016 Aug 25;8(8):2358-75. doi: 10.1093/gbe/evw155.
5
The genome of Aiptasia, a sea anemone model for coral symbiosis.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11893-8. doi: 10.1073/pnas.1513318112. Epub 2015 Aug 31.
6
The multigene families of actinoporins (part I): Isoforms and genetic structure.
Toxicon. 2015 Sep;103:176-87. doi: 10.1016/j.toxicon.2015.06.028. Epub 2015 Jul 14.
7
Differences in activity of actinoporins are related with the hydrophobicity of their N-terminus.
Biochimie. 2015 Sep;116:70-8. doi: 10.1016/j.biochi.2015.06.024. Epub 2015 Jun 29.
9
Characterization of the Lipid-Binding Site of Equinatoxin II by NMR and Molecular Dynamics Simulation.
Biophys J. 2015 Apr 21;108(8):1987-96. doi: 10.1016/j.bpj.2015.03.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验