Macrander Jason, Daly Marymegan
Department of Evolution, Ecology, and Organismal Biology, Ohio State University, 1315 Kinnear Rd, Columbus, OH 43212, USA.
Department of Biological Sciences, University of North Carolina, Charlotte, 9201 University City Blvd., 373 Woodward Hall, Charlotte, NC 282233, USA.
Toxins (Basel). 2016 Dec 8;8(12):368. doi: 10.3390/toxins8120368.
Sea anemones (Cnidaria, Anthozoa, and Actiniaria) use toxic peptides to incapacitate and immobilize prey and to deter potential predators. Their toxin arsenal is complex, targeting a variety of functionally important protein complexes and macromolecules involved in cellular homeostasis. Among these, actinoporins are one of the better characterized toxins; these venom proteins form a pore in cellular membranes containing sphingomyelin. We used a combined bioinformatic and phylogenetic approach to investigate how actinoporins have evolved across three superfamilies of sea anemones (Actinioidea, Metridioidea, and Actinostoloidea). Our analysis identified 90 candidate actinoporins across 20 species. We also found clusters of six actinoporin-like genes in five species of sea anemone (, , , , and ); these actinoporin-like sequences resembled actinoporins but have a higher sequence similarity with toxins from fungi, cone snails, and . Comparative analysis of the candidate actinoporins highlighted variable and conserved regions within actinoporins that may pertain to functional variation. Although multiple residues are involved in initiating sphingomyelin recognition and membrane binding, there is a high rate of replacement for a specific tryptophan with leucine (W112L) and other hydrophobic residues. Residues thought to be involved with oligomerization were variable, while those forming the phosphocholine (POC) binding site and the N-terminal region involved with cell membrane penetration were highly conserved.
海葵(刺胞动物门、珊瑚纲、海葵目)利用毒性肽使猎物丧失能力并 immobilize(此处原文有误,可能是“immobilize”,意为“使固定、使不能移动”),并威慑潜在的捕食者。它们的毒素库很复杂,针对各种参与细胞内稳态的功能重要的蛋白质复合物和大分子。其中,刺胞孔蛋白是特征较为明确的毒素之一;这些毒液蛋白在含有鞘磷脂的细胞膜上形成一个孔。我们采用生物信息学和系统发育相结合的方法,研究刺胞孔蛋白在海葵的三个超科(海葵超科、梅氏海葵超科和刺丝海葵超科)中是如何进化的。我们的分析在20个物种中鉴定出90个候选刺胞孔蛋白。我们还在五种海葵(此处原文物种名缺失)中发现了六个类似刺胞孔蛋白的基因簇;这些类似刺胞孔蛋白的序列类似于刺胞孔蛋白,但与来自真菌、芋螺和(此处原文有误,缺失相关信息)的毒素具有更高的序列相似性。对候选刺胞孔蛋白的比较分析突出了刺胞孔蛋白内可能与功能变异相关的可变区和保守区。尽管多个残基参与启动鞘磷脂识别和膜结合,但特定的色氨酸被亮氨酸(W112L)和其他疏水残基替代的比率很高。被认为与寡聚化有关的残基是可变的,而形成磷酸胆碱(POC)结合位点和参与细胞膜穿透的N端区域则高度保守。