Suppr超能文献

基于序列的miRNA靶标预测工具:如何选择?

Tools for Sequence-Based miRNA Target Prediction: What to Choose?

作者信息

Riffo-Campos Ángela L, Riquelme Ismael, Brebi-Mieville Priscilla

机构信息

Molecular Pathology Laboratory, Department of Pathology, Faculty of Medicine, Universidad de La Frontera, Avenida Alemania 0458, 3rd Floor, Temuco 4810296, Chile.

Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile.

出版信息

Int J Mol Sci. 2016 Dec 9;17(12):1987. doi: 10.3390/ijms17121987.

Abstract

MicroRNAs (miRNAs) are defined as small non-coding RNAs ~22 nt in length. They regulate gene expression at a post-transcriptional level through complementary base pairing with the target mRNA, leading to mRNA degradation and therefore blocking translation. In the last decade, the dysfunction of miRNAs has been related to the development and progression of many diseases. Currently, researchers need a method to identify precisely the miRNA targets, prior to applying experimental approaches that allow a better functional characterization of miRNAs in biological processes and can thus predict their effects. Computational prediction tools provide a rapid method to identify putative miRNA targets. However, since a large number of tools for the prediction of miRNA:mRNA interactions have been developed, all with different algorithms, the biological researcher sometimes does not know which is the best choice for his study and many times does not understand the bioinformatic basis of these tools. This review describes the biological fundamentals of these prediction tools, characterizes the main sequence-based algorithms, and offers some insights into their uses by biologists.

摘要

微小RNA(miRNA)被定义为长度约22个核苷酸的小型非编码RNA。它们通过与靶mRNA的互补碱基配对在转录后水平调节基因表达,导致mRNA降解,从而阻断翻译。在过去十年中,miRNA的功能障碍与许多疾病的发生和发展有关。目前,研究人员在应用能够更好地对miRNA在生物过程中的功能进行表征并因此预测其作用的实验方法之前,需要一种精确识别miRNA靶标的方法。计算预测工具提供了一种快速识别假定miRNA靶标的方法。然而,由于已经开发了大量用于预测miRNA:mRNA相互作用的工具,且所有工具都具有不同的算法,生物学研究人员有时不知道哪种工具最适合其研究,并且很多时候不理解这些工具的生物信息学基础。本综述描述了这些预测工具的生物学基础,对主要的基于序列的算法进行了表征,并为生物学家对其的使用提供了一些见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19bd/5187787/9c8b8bce290b/ijms-17-01987-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验