Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden.
Nanoscale. 2017 Jan 5;9(2):673-683. doi: 10.1039/c6nr04852h.
Here we investigate the energy transfer rates of a Förster resonance energy transfer (FRET) pair positioned in close proximity to a 5 nm gold nanoparticle (AuNP) on a DNA origami construct. We study the distance dependence of the FRET rate by varying the location of the donor molecule, D, relative to the AuNP while maintaining a fixed location of the acceptor molecule, A. The presence of the AuNP induces an alteration in the spontaneous emission of the donor (including radiative and non-radiative rates) which is strongly dependent on the distance between the donor and AuNP surface. Simultaneously, the energy transfer rates are enhanced at shorter D-A (and D-AuNP) distances. Overall, in addition to the direct influence of the acceptor and AuNP on the donor decay there is also a significant increase in decay rate not explained by the sum of the two interactions. This leads to enhanced energy transfer between donor and acceptor in the presence of a 5 nm AuNP. We also demonstrate that the transfer rate in the three "particle" geometry (D + A + AuNP) depends approximately linearly on the transfer rate in the donor-AuNP system, suggesting the possibility to control FRET process with electric field induced by 5 nm AuNPs close to the donor fluorophore. It is concluded that DNA origami is a very versatile platform for studying interactions between molecules and plasmonic nanoparticles in general and FRET enhancement in particular.
在这里,我们研究了在 DNA 折纸结构上靠近 5nm 金纳米粒子(AuNP)的 Förster 共振能量转移(FRET)对的能量转移速率。我们通过改变供体分子 D 相对于 AuNP 的位置来研究 FRET 速率与距离的关系,同时保持受体分子 A 的固定位置。AuNP 的存在会导致供体的自发发射发生变化(包括辐射和非辐射速率),这强烈依赖于供体和 AuNP 表面之间的距离。同时,在较短的 D-A(和 D-AuNP)距离下,能量转移速率会增强。总的来说,除了受体和 AuNP 对供体衰减的直接影响外,还有一个显著增加的衰减率,这不能用两个相互作用的总和来解释。这导致在存在 5nm AuNP 的情况下,供体和受体之间的能量转移增强。我们还证明,在三个“粒子”几何结构(D+A+AuNP)中,转移速率大约与供体-AuNP 系统中的转移速率呈线性关系,这表明有可能通过靠近供体荧光团的 5nm AuNP 产生的电场来控制 FRET 过程。结论是,DNA 折纸术是研究分子与等离子体纳米粒子之间相互作用以及 FRET 增强的通用平台。