Suppr超能文献

飞秒激光微加工聚酰亚胺薄膜在细胞支架中的应用。

Femtosecond laser micro-machined polyimide films for cell scaffold applications.

机构信息

Institute of Cardiology of Lithuanian University of Health Sciences, Sukilėlių Ave. 17, LT-50009, Lithuania.

Institute of Materials Science of Kaunas University of Technology, K. Baršausko, Str. 59, LT-51423, Kaunas, Lithuania.

出版信息

J Tissue Eng Regen Med. 2018 Feb;12(2):e760-e773. doi: 10.1002/term.2376. Epub 2017 Jun 4.

Abstract

Engineering of sophisticated synthetic 3D scaffolds that allow controlling behaviour and location of the cells requires advanced micro/nano-fabrication techniques. Ultrafast laser micro-machining employing a 1030-nm wavelength Yb:KGW femtosecond laser and a micro-fabrication workstation for micro-machining of commercially available 12.7 and 25.4 μm thickness polyimide (PI) film was applied. Mechanical properties of the fabricated scaffolds, i.e. arrays of differently spaced holes, were examined via custom-built uniaxial micro-tensile testing and finite element method simulations. We demonstrate that experimental micro-tensile testing results could be numerically simulated and explained by two-material model, assuming that 2-6 μm width rings around the holes possessed up to five times higher Young's modulus and yield stress compared with the rest of the laser intacted PI film areas of 'dog-bone'-shaped specimens. That was attributed to material modification around the micro-machined holes in the vicinity of the position of the focused laser beam track during trepanning drilling. We demonstrate that virgin PI films provide a suitable environment for the mobility, proliferation and intercellular communication of human bone marrow mesenchymal stem cells, and discuss how cell behaviour varies on the micro-machined PI films with holes of different diameters (3.1, 8.4 and 16.7 μm) and hole spacing (30, 35, 40 and 45 μm). We conclude that the holes of 3.1 μm diameter were sufficient for metabolic and genetic communication through membranous tunneling tubes between cells residing on the opposite sides of PI film, but prevented the trans-migration of cells through the holes. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

工程中复杂的合成 3D 支架需要控制细胞的行为和位置,这需要先进的微/纳制造技术。采用 1030nm 波长的 Yb:KGW 飞秒激光和微加工工作站对商业上可用的 12.7 和 25.4μm 厚的聚酰亚胺(PI)膜进行超快激光微加工。通过定制的单轴微拉伸试验和有限元方法模拟,研究了所制造的支架的机械性能,即不同间隔孔的阵列。我们证明可以通过双材料模型数值模拟和解释实验微拉伸测试结果,假设孔周围 2-6μm 宽的环的杨氏模量和屈服应力比激光未损伤的 PI 膜的其余部分高 5 倍,这些部分呈“狗骨”形状的试件。这归因于在微加工孔附近的聚焦激光束轨迹位置处进行钻孔时对周围材料的改性。我们证明了原始 PI 膜为骨髓间充质干细胞的迁移、增殖和细胞间通讯提供了合适的环境,并讨论了细胞行为如何在具有不同直径(3.1、8.4 和 16.7μm)和孔间距(30、35、40 和 45μm)的微加工 PI 膜上发生变化。我们得出结论,3.1μm 直径的孔足以通过位于 PI 膜相对侧的细胞之间的膜状隧道进行代谢和遗传通讯,但阻止了细胞穿过孔的迁移。版权所有©2016 年 John Wiley & Sons, Ltd.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验