Laurent G, Burrows M
Department of Zoology, University of Cambridge, England.
J Neurosci. 1989 Sep;9(9):3030-9. doi: 10.1523/JNEUROSCI.09-09-03030.1989.
The gain of local reflexes of one leg of a locust can be altered by mechanosensory inputs generated by movements of or tactile inputs to an adjacent leg. Touching the mesothoracic tarsus, for example, increases the number of spikes that are produced by the metathoracic slow extensor tibiae motor neuron and enhances the depolarization of flexor tibiae motor neuron in response to imposed movements of the chordotonal organ in the ipsilateral hind femur. The sensory information from the middle leg is conveyed directly to nonspiking interneurons and motor neurons controlling the movements of the hindleg by a population of mesothoracic intersegmental interneurons (Laurent and Burrows, 1989). The metathoracic nonspiking interneurons receive direct inputs from receptors on a hindleg and are, therefore, a point of convergence for local and intersegmental inputs. We examine here the role of the connections between mesothoracic intersegmental interneurons and metathoracic nonspiking interneurons in controlling metathoracic local reflexes. The amplitude of synaptic potentials evoked in leg motor neurons by the stimulation of local afferents can be modulated by altering the membrane potential of an interposed nonspiking interneuron with current injected through an intracellular electrode. These imposed voltage changes mimic a mesothoracic input and show that the state of a nonspiking local interneuron is a determining factor in the expression of a local reflex. Inputs from mesothoracic intersegmental interneurons may cause large changes in the input conductance of nonspiking interneurons that can shunt a local afferent input. In some nonspiking interneurons, synaptic potentials caused by mesothoracic interneurons can be recorded, but no underlying conductance change can be detected at the recording site. Similarly, a particular nonspiking interneuron may receive synaptic inputs when two distinct regions of a middle leg are touched, but only one of these intersegmental inputs may be effective in reducing the amplitude of a synaptic potential caused by afferents from the hindleg. These results suggest that nonspiking local interneurons may be compartmentalized, with synaptic inputs and their associated conductance changes restricted to particular branches. In this way, an individual nonspiking neuron could contribute simultaneously to several local circuits. The inputs from different intersegmental interneurons could then modulate these pathways independently.
蝗虫一条腿的局部反射增益可因相邻腿的运动产生的机械感觉输入或触觉输入而改变。例如,触碰中胸跗节会增加后胸慢伸胫运动神经元产生的动作电位数量,并增强屈胫运动神经元对同侧后股骨弦音器施加运动的去极化反应。来自中腿的感觉信息通过一群中胸节间中间神经元直接传递给控制后腿运动的无锋电位中间神经元和运动神经元(洛朗和伯罗斯,1989年)。后胸无锋电位中间神经元直接接受来自后腿感受器的输入,因此是局部和节间输入的汇聚点。我们在此研究中胸节间中间神经元与后胸无锋电位中间神经元之间的连接在控制后胸局部反射中的作用。通过细胞内电极注入电流改变插入的无锋电位中间神经元的膜电位,可以调节局部传入神经刺激在腿部运动神经元中诱发的突触电位幅度。这些施加的电压变化模拟了中胸输入,表明无锋电位局部中间神经元的状态是局部反射表达的决定因素。中胸节间中间神经元的输入可能会导致无锋电位中间神经元的输入电导发生大的变化,从而分流局部传入输入。在一些无锋电位中间神经元中,可以记录到由中胸中间神经元引起的突触电位,但在记录部位未检测到潜在的电导变化。同样,当触碰中腿的两个不同区域时,特定的无锋电位中间神经元可能会接受突触输入,但这些节间输入中只有一个可能有效地降低由后肢传入神经引起的突触电位幅度。这些结果表明,无锋电位局部中间神经元可能是分隔的,突触输入及其相关的电导变化仅限于特定分支。通过这种方式,单个无锋电位神经元可以同时参与多个局部回路。来自不同节间中间神经元的输入然后可以独立调节这些通路。