Suppr超能文献

在行走昆虫的运动反馈的感觉运动处理中,身体侧面特异性的变化。

Body side-specific changes in sensorimotor processing of movement feedback in a walking insect.

机构信息

Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne, Cologne, Germany.

出版信息

J Neurophysiol. 2019 Nov 1;122(5):2173-2186. doi: 10.1152/jn.00436.2019. Epub 2019 Sep 25.

Abstract

Feedback from load and movement sensors can modify timing and magnitude of the motor output in the stepping stick insect. One source of feedback is stretch reception by the femoral chordotonal organ (fCO), which encodes such parameters as the femorotibial (FTi) joint angle, the angular velocity, and its acceleration. Stimulation of the fCO causes a postural resistance reflex, during quiescence, and can elicit the opposite, so-called active reaction (AR), which assists ongoing flexion during active movements. In the present study, we investigated the role of fCO feedback for the difference in likelihood of generating ARs on the inside vs. the outside during curve stepping. We analyzed the effects of fCO stimulation on the motor output to the FTi and the neighboring coxa-trochanter and thorax-coxa joints of the middle leg. In inside and outside turns, the probability for ARs increases with increasing starting angle and decreasing stimulus velocity; furthermore, it is independent of the total angular excursion. However, the transition between stance and swing motor activity always occurs after a specific angular excursion, independent of the turning direction. Feedback from the fCO also has an excitatory influence on levator trochanteris motoneurons (MNs) during inside and outside turns, whereas the same feedback affects protractor coxae MNs only during outside steps. Our results suggest joint- and body side-dependent processing of fCO feedback. A shift in gain may be responsible for different AR probabilities between inside and outside turning, whereas the general control mechanism for ARs is unchanged. We show that parameters of movement feedback from the tibia in an insect during curve walking are processed in a body side-specific manner, and how. From our results it is highly conceivable that the difference in motor response to the feedback supports the body side-specific leg kinematics during turning. Future studies will need to determine the source for the inputs that determine the local changes in sensory-motor processing.

摘要

负载和运动传感器的反馈可以修改步进竹节虫的电机输出的定时和幅度。反馈的一个来源是股索音器官(fCO)的拉伸接收,它编码了诸如股胫(FTi)关节角度、角速度及其加速度等参数。fCO 的刺激会在静止时引起姿势抵抗反射,并可能引发相反的所谓主动反应(AR),这有助于在主动运动中持续弯曲。在本研究中,我们研究了 fCO 反馈在曲线行走过程中内侧与外侧产生 AR 的可能性差异的作用。我们分析了 fCO 刺激对中间腿的 FTi 及相邻的髋关节和胸节-髋关节的电机输出的影响。在内侧和外侧转弯中,随着起始角度的增加和刺激速度的降低,AR 的概率增加;此外,它与总角位移无关。然而,无论转弯方向如何,站立和摆动运动活动之间的转换总是在特定的角位移之后发生。fCO 的反馈对外侧转弯中的提转节肌运动神经元(MNs)也有兴奋作用,而相同的反馈仅在外侧步骤中影响外侧髋关节 MNs。我们的结果表明,fCO 反馈的关节和身体侧处理方式不同。增益的变化可能是内侧和外侧转弯之间 AR 概率不同的原因,而 AR 的一般控制机制保持不变。我们表明,在昆虫的曲线行走过程中,来自胫骨的运动反馈的参数以特定于身体侧的方式进行处理,以及如何处理。从我们的结果可以高度想象,对反馈的运动反应的差异支持转弯过程中特定于身体侧的腿部运动学。未来的研究将需要确定确定感觉运动处理局部变化的输入源。

相似文献

1
Body side-specific changes in sensorimotor processing of movement feedback in a walking insect.
J Neurophysiol. 2019 Nov 1;122(5):2173-2186. doi: 10.1152/jn.00436.2019. Epub 2019 Sep 25.
2
Distributed processing of load and movement feedback in the premotor network controlling an insect leg joint.
J Neurophysiol. 2021 May 1;125(5):1800-1813. doi: 10.1152/jn.00090.2021. Epub 2021 Mar 31.
5
Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects.
J Neurophysiol. 2006 Dec;96(6):3532-7. doi: 10.1152/jn.00625.2006. Epub 2006 Sep 6.
6
Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg.
J Neurophysiol. 2009 Sep;102(3):1956-75. doi: 10.1152/jn.00312.2009. Epub 2009 Jul 15.
8
Non-linear multimodal integration in a distributed premotor network controls proprioceptive reflex gain in the insect leg.
Curr Biol. 2022 Sep 12;32(17):3847-3854.e3. doi: 10.1016/j.cub.2022.07.005. Epub 2022 Jul 26.
9
Signals from load sensors underlie interjoint coordination during stepping movements of the stick insect leg.
J Neurophysiol. 2004 Jul;92(1):42-51. doi: 10.1152/jn.01271.2003. Epub 2004 Mar 3.

引用本文的文献

1
Thorax-Segment- and Leg-Segment-Specific Motor Control for Adaptive Behavior.
Front Physiol. 2022 May 4;13:883858. doi: 10.3389/fphys.2022.883858. eCollection 2022.
2
Evaluation of force feedback in walking using joint torques as "naturalistic" stimuli.
J Neurophysiol. 2021 Jul 1;126(1):227-248. doi: 10.1152/jn.00120.2021. Epub 2021 Jun 9.

本文引用的文献

1
A kinematic model of stick-insect walking.
Physiol Rep. 2019 Apr;7(8):e14080. doi: 10.14814/phy2.14080.
2
The subesophageal ganglion modulates locust inter-leg sensory-motor interactions via contralateral pathways.
J Insect Physiol. 2018 May-Jun;107:116-124. doi: 10.1016/j.jinsphys.2018.03.007. Epub 2018 Mar 22.
3
5
Template for the neural control of directed stepping generalized to all legs of MantisBot.
Bioinspir Biomim. 2017 Jun 8;12(4):045001. doi: 10.1088/1748-3190/aa6dd9.
6
Supraspinal control of spinal reflex responses to body bending during different behaviours in lampreys.
J Physiol. 2017 Feb 1;595(3):883-900. doi: 10.1113/JP272714. Epub 2016 Oct 13.
7
Body side-specific control of motor activity during turning in a walking animal.
Elife. 2016 Apr 27;5:e13799. doi: 10.7554/eLife.13799.
9
Central-complex control of movement in the freely walking cockroach.
Curr Biol. 2015 Nov 2;25(21):2795-2803. doi: 10.1016/j.cub.2015.09.044. Epub 2015 Oct 22.
10
Controlling legs for locomotion-insights from robotics and neurobiology.
Bioinspir Biomim. 2015 Jun 29;10(4):041001. doi: 10.1088/1748-3190/10/4/041001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验