Suppr超能文献

双链 DNA 层的末端特异性相互作用:胶体分散行为和表面力。

Terminal-Specific Interaction between Double-Stranded DNA Layers: Colloidal Dispersion Behavior and Surface Force.

机构信息

Interdisciplinary Graduate School of Science and Technology, Shinshu University , 4-7-1 Wakasato, Nagano, Nagano 380-8553, Japan.

Bioengineering Laboratory, RIKEN , 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.

出版信息

Langmuir. 2016 Dec 13;32(49):13296-13304. doi: 10.1021/acs.langmuir.6b03470. Epub 2016 Nov 29.

Abstract

Double-stranded DNA-grafted nanoparticles (dsDNA-NPs) exhibit a unique dispersion behavior under high-salt conditions depending on the pairing status of their outermost base pairs (pairing or unpairing). The dsDNA-NPs having complementary (i.e., pairing) outermost base pairs spontaneously aggregate under high-salt conditions, but not when their outermost base pairs are mismatched (unpairing). In this study, we used colloidal probe atomic force microscopy to examine how the outermost base pairs affect the interaction between the dsDNA-grafted layers (dsDNA layers). To precisely assess the subtle structural differences in the dsDNA layers, we developed a method for the formation of a homogenous dsDNA layer on gold surfaces using hairpin-shaped DNAs. Homogenous dsDNA layers having complementary (G-C) or mismatched (C-C) outermost base pairs were grafted onto the surfaces of colloidal probes and gold substrates. Force-distance curves measured in an aqueous medium under high-salt conditions revealed that the surface forces between the dsDNA layers were bilateral in nature and were governed by the outermost base pairs. Between complementary outermost dsDNA layers, the surface force changed from repulsive to attractive with an increase in the NaCl concentration (10-1000 mM). The attraction observed under high-salt conditions was attributed to the site-specific interaction proceeded only between complementary dsDNA terminals, the so-called blunt-end stacking. In fact, between mismatched outermost dsDNA layers, the repulsive force was mostly dominant within the same NaCl concentration range. Our results clearly revealed that the pairing status of the outermost base pairs has significant implications for the surface forces between dsDNA layers, leading to the unique dispersion behavior of dsDNA-NPs.

摘要

双链 DNA 接枝纳米粒子 (dsDNA-NPs) 在高盐条件下表现出独特的分散行为,这取决于其最外层碱基对的配对状态(配对或不配对)。具有互补(即配对)最外层碱基对的 dsDNA-NPs 在高盐条件下自发聚集,但当最外层碱基对不匹配(不配对)时则不会聚集。在这项研究中,我们使用胶体探针原子力显微镜研究了最外层碱基对如何影响 dsDNA 接枝层(dsDNA 层)之间的相互作用。为了精确评估 dsDNA 层中的细微结构差异,我们开发了一种使用发夹状 DNA 在金表面形成均匀 dsDNA 层的方法。具有互补 (G-C) 或不匹配 (C-C) 最外层碱基对的均匀 dsDNA 层被接枝到胶体探针和金基底的表面上。在高盐条件下的水溶液中测量的力-距离曲线表明,dsDNA 层之间的表面力具有双边性质,并受最外层碱基对的控制。在互补的最外层 dsDNA 层之间,随着 NaCl 浓度(10-1000 mM)的增加,表面力从排斥变为吸引。在高盐条件下观察到的吸引力归因于仅在互补 dsDNA 末端之间进行的特定位置相互作用,即所谓的钝端堆积。事实上,在不匹配的最外层 dsDNA 层之间,在相同的 NaCl 浓度范围内,排斥力主要占主导地位。我们的结果清楚地表明,最外层碱基对的配对状态对 dsDNA 层之间的表面力有重要影响,导致 dsDNA-NPs 具有独特的分散行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验