Suppr超能文献

一种基因编码的荧光转运RNA在活细胞蛋白质合成中具有活性。

A genetically encoded fluorescent tRNA is active in live-cell protein synthesis.

作者信息

Masuda Isao, Igarashi Takao, Sakaguchi Reiko, Nitharwal Ram G, Takase Ryuichi, Han Kyu Young, Leslie Benjamin J, Liu Cuiping, Gamper Howard, Ha Taekjip, Sanyal Suparna, Hou Ya-Ming

机构信息

Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA.

Department of Cell and Molecular Biology, Uppsala University, Box-596, BMC 75124, Uppsala, Sweden.

出版信息

Nucleic Acids Res. 2017 Apr 20;45(7):4081-4093. doi: 10.1093/nar/gkw1229.

Abstract

Transfer RNAs (tRNAs) perform essential tasks for all living cells. They are major components of the ribosomal machinery for protein synthesis and they also serve in non-ribosomal pathways for regulation and signaling metabolism. We describe the development of a genetically encoded fluorescent tRNA fusion with the potential for imaging in live Escherichia coli cells. This tRNA fusion carries a Spinach aptamer that becomes fluorescent upon binding of a cell-permeable and non-toxic fluorophore. We show that, despite having a structural framework significantly larger than any natural tRNA species, this fusion is a viable probe for monitoring tRNA stability in a cellular quality control mechanism that degrades structurally damaged tRNA. Importantly, this fusion is active in E. coli live-cell protein synthesis allowing peptidyl transfer at a rate sufficient to support cell growth, indicating that it is accommodated by translating ribosomes. Imaging analysis shows that this fusion and ribosomes are both excluded from the nucleoid, indicating that the fusion and ribosomes are in the cytosol together possibly engaged in protein synthesis. This fusion methodology has the potential for developing new tools for live-cell imaging of tRNA with the unique advantage of both stoichiometric labeling and broader application to all cells amenable to genetic engineering.

摘要

转运RNA(tRNA)对所有活细胞都起着至关重要的作用。它们是蛋白质合成核糖体机制的主要组成部分,也参与非核糖体途径的调节和信号代谢。我们描述了一种基因编码的荧光tRNA融合体的开发,它具有在活的大肠杆菌细胞中成像的潜力。这种tRNA融合体携带一个菠菜适配体,在与一种可透过细胞且无毒的荧光团结合后会发出荧光。我们表明,尽管其结构框架比任何天然tRNA种类都大得多,但这种融合体是一种可行的探针,可用于监测细胞质量控制机制中tRNA的稳定性,该机制会降解结构受损的tRNA。重要的是,这种融合体在大肠杆菌活细胞蛋白质合成中具有活性,能够以足以支持细胞生长的速率进行肽基转移,这表明它能被正在进行翻译的核糖体所容纳。成像分析表明,这种融合体和核糖体都被排除在类核之外,这表明融合体和核糖体共同存在于细胞质中,可能参与蛋白质合成。这种融合方法有潜力开发用于tRNA活细胞成像的新工具,具有化学计量标记的独特优势,并且更广泛地应用于所有适合基因工程的细胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e80/5397188/049e458ff3b1/gkw1229fig1.jpg

相似文献

1
A genetically encoded fluorescent tRNA is active in live-cell protein synthesis.
Nucleic Acids Res. 2017 Apr 20;45(7):4081-4093. doi: 10.1093/nar/gkw1229.
2
Live Cell Imaging of Endogenous mRNA Using RNA-Based Fluorescence "Turn-On" Probe.
ACS Chem Biol. 2017 Jan 20;12(1):200-205. doi: 10.1021/acschembio.6b00586. Epub 2016 Dec 7.
3
Use of Baby Spinach and Broccoli for imaging of structured cellular RNAs.
Nucleic Acids Res. 2017 Feb 17;45(3):1404-1415. doi: 10.1093/nar/gkw794.
4
Imaging bacterial protein expression using genetically encoded RNA sensors.
Nat Methods. 2013 Sep;10(9):873-5. doi: 10.1038/nmeth.2568. Epub 2013 Jul 21.
5
Live Cell Imaging Using Riboswitch-Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors.
Methods Mol Biol. 2021;2323:121-140. doi: 10.1007/978-1-0716-1499-0_10.
6
RNA mimics of green fluorescent protein.
Science. 2011 Jul 29;333(6042):642-6. doi: 10.1126/science.1207339.
7
Tandem Spinach Array for mRNA Imaging in Living Bacterial Cells.
Sci Rep. 2015 Nov 27;5:17295. doi: 10.1038/srep17295.
9
Photophysics of DFHBI bound to RNA aptamer Baby Spinach.
Sci Rep. 2021 Apr 1;11(1):7356. doi: 10.1038/s41598-021-85091-y.
10
Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution.
J Am Chem Soc. 2014 Nov 19;136(46):16299-308. doi: 10.1021/ja508478x. Epub 2014 Nov 5.

引用本文的文献

1
Structural Basis for Retron Co-option of Anti-phage ATPase-nuclease.
bioRxiv. 2025 May 13:2025.05.10.653283. doi: 10.1101/2025.05.10.653283.
2
3
A universal orthogonal imaging platform for living-cell RNA detection using fluorogenic RNA aptamers.
Chem Sci. 2023 Dec 2;14(48):14131-14139. doi: 10.1039/d3sc04957d. eCollection 2023 Dec 13.
4
Probing RNA Structures and Interactions Using Fluorescence Lifetime Analyses.
Methods Mol Biol. 2023;2568:13-23. doi: 10.1007/978-1-0716-2687-0_2.
5
Rational Design of Aptamer-Tagged tRNAs.
Int J Mol Sci. 2020 Oct 21;21(20):7793. doi: 10.3390/ijms21207793.
6
A Label-Free Assay for Aminoacylation of tRNA.
Genes (Basel). 2020 Oct 7;11(10):1173. doi: 10.3390/genes11101173.
7
Structure-fluorescence activation relationships of a large Stokes shift fluorogenic RNA aptamer.
Nucleic Acids Res. 2019 Dec 16;47(22):11538-11550. doi: 10.1093/nar/gkz1084.

本文引用的文献

1
Molecular Basis and Consequences of the Cytochrome c-tRNA Interaction.
J Biol Chem. 2016 May 6;291(19):10426-36. doi: 10.1074/jbc.M115.697789. Epub 2016 Mar 9.
2
iSpinach: a fluorogenic RNA aptamer optimized for in vitro applications.
Nucleic Acids Res. 2016 Apr 7;44(6):2491-500. doi: 10.1093/nar/gkw083. Epub 2016 Mar 1.
3
Tandem Spinach Array for mRNA Imaging in Living Bacterial Cells.
Sci Rep. 2015 Nov 27;5:17295. doi: 10.1038/srep17295.
4
Systematic reconstruction of binding and stability landscapes of the fluorogenic aptamer spinach.
Nucleic Acids Res. 2015 Oct 30;43(19):9564-72. doi: 10.1093/nar/gkv944. Epub 2015 Sep 22.
5
The spatial biology of transcription and translation in rapidly growing Escherichia coli.
Front Microbiol. 2015 Jul 2;6:636. doi: 10.3389/fmicb.2015.00636. eCollection 2015.
6
The UGG Isoacceptor of tRNAPro Is Naturally Prone to Frameshifts.
Int J Mol Sci. 2015 Jul 1;16(7):14866-83. doi: 10.3390/ijms160714866.
7
Maintenance of protein synthesis reading frame by EF-P and m(1)G37-tRNA.
Nat Commun. 2015 May 26;6:7226. doi: 10.1038/ncomms8226.
8
Live-cell imaging of endogenous mRNAs with a small molecule.
Angew Chem Int Ed Engl. 2015 Feb 2;54(6):1855-8. doi: 10.1002/anie.201410339. Epub 2014 Dec 23.
9
Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution.
J Am Chem Soc. 2014 Nov 19;136(46):16299-308. doi: 10.1021/ja508478x. Epub 2014 Nov 5.
10
RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking.
ACS Chem Biol. 2014 Oct 17;9(10):2412-20. doi: 10.1021/cb500499x. Epub 2014 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验