Filonov Grigory S, Moon Jared D, Svensen Nina, Jaffrey Samie R
Department of Pharmacology, Weill Cornell Medical College , New York, New York 10065, United States.
J Am Chem Soc. 2014 Nov 19;136(46):16299-308. doi: 10.1021/ja508478x. Epub 2014 Nov 5.
Genetically encoded fluorescent ribonucleic acids (RNAs) have diverse applications, including imaging RNA trafficking and as a component of RNA-based sensors that exhibit fluorescence upon binding small molecules in live cells. These RNAs include the Spinach and Spinach2 aptamers, which bind and activate the fluorescence of fluorophores similar to that found in green fluorescent protein. Although additional highly fluorescent RNA-fluorophore complexes would extend the utility of this technology, the identification of novel RNA-fluorophore complexes is difficult. Current approaches select aptamers on the basis of their ability to bind fluorophores, even though fluorophore binding alone is not sufficient to activate fluorescence. Additionally, aptamers require extensive mutagenesis to efficiently fold and exhibit fluorescence in living cells. Here we describe a platform for rapid generation of highly fluorescent RNA-fluorophore complexes that are optimized for function in cells. This procedure involves selection of aptamers on the basis of their binding to fluorophores, coupled with fluorescence-activated cell sorting (FACS) of millions of aptamers expressed in Escherichia coli. Promising aptamers are then further optimized using a FACS-based directed evolution approach. Using this approach, we identified several novel aptamers, including a 49-nt aptamer, Broccoli. Broccoli binds and activates the fluorescence of (Z)-4-(3,5-difluoro-4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one. Broccoli shows robust folding and green fluorescence in cells, and increased fluorescence relative to Spinach2. This reflects, in part, improved folding in the presence of low cytosolic magnesium concentrations. Thus, this novel fluorescence-based selection approach simplifies the generation of aptamers that are optimized for expression and performance in living cells.
基因编码的荧光核糖核酸(RNA)有多种应用,包括对RNA转运进行成像,以及作为基于RNA的传感器的一个组件,该传感器在活细胞中与小分子结合时会发出荧光。这些RNA包括菠菜(Spinach)和菠菜2适配体,它们结合并激活类似于绿色荧光蛋白中发现的荧光团的荧光。尽管额外的高荧光RNA-荧光团复合物将扩展这项技术的应用范围,但鉴定新型RNA-荧光团复合物却很困难。目前的方法是根据适配体结合荧光团的能力来选择它们,尽管仅荧光团结合不足以激活荧光。此外,适配体需要广泛的诱变才能在活细胞中有效折叠并发出荧光。在这里,我们描述了一个快速生成高荧光RNA-荧光团复合物的平台,这些复合物针对细胞中的功能进行了优化。这个过程包括基于适配体与荧光团的结合来选择它们,再结合对在大肠杆菌中表达的数百万个适配体进行荧光激活细胞分选(FACS)。然后使用基于FACS的定向进化方法对有前景的适配体进行进一步优化。使用这种方法,我们鉴定出了几种新型适配体,包括一个49个核苷酸的适配体,西兰花(Broccoli)。西兰花结合并激活了(Z)-4-(3,5-二氟-4-羟基亚苄基)-1,2-二甲基-1H-咪唑-5(4H)-酮的荧光。西兰花在细胞中显示出强劲的折叠和绿色荧光,并且相对于菠菜2荧光增强。这部分反映了在低胞质镁浓度存在下折叠的改善。因此,这种基于荧光的新型选择方法简化了为在活细胞中的表达和性能而优化的适配体的生成。