Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
Albert Einstein College of Medicine, Bronx, NY, USA.
Mol Psychiatry. 2018 Apr;23(4):904-913. doi: 10.1038/mp.2016.219. Epub 2016 Dec 13.
Genetic susceptibility and environmental factors (such as stress) can interact to affect the likelihood of developing a mood disorder. Stress-induced changes in the hippocampus have been implicated in mood disorders, and mutations in several genes have now been associated with increased risk, such as brain-derived neurotrophic factor (BDNF). The hippocampus has important anatomical subdivisions, and pyramidal neurons of the vulnerable CA3 region show significant remodeling after chronic stress, but the mechanisms underlying their unique plasticity remain unknown. This study characterizes stress-induced changes in the in vivo translating mRNA of this cell population using a CA3-specific enhanced green fluorescent protein (EGFP) reporter fused to the L10a large ribosomal subunit (EGFPL10a). RNA-sequencing after isolation of polysome-bound mRNAs allows for cell-type-specific, genome-wide characterization of translational changes after stress. The data demonstrate that acute and chronic stress produce unique translational profiles and that the stress history of the animal can alter future reactivity of CA3 neurons. CA3-specific EGFPL10a mice were then crossed to the stress-susceptible BDNF Val66Met mouse line to characterize how a known genetic susceptibility alters both baseline translational profiles and the reactivity of CA3 neurons to stress. Not only do Met allele carriers exhibit distinct levels of baseline translation in genes implicated in ion channel function and cytoskeletal regulation, but they also activate a stress response profile that is highly dissimilar from wild-type mice. Closer examination of genes implicated in the mechanisms of neuroplasticity, such as the NMDA and AMPA subunits and the BDNF pathway, reveal how wild-type mice upregulate many of these genes in response to stress, but Met allele carriers fail to do so. These profiles provide a roadmap of stress-induced changes in a genetically homogenous population of hippocampal neurons and illustrate the profound effects of gene-environment interactions on the translational profile of these cells.
遗传易感性和环境因素(如压力)可以相互作用,影响情绪障碍的发生几率。海马体中应激诱导的变化与情绪障碍有关,现在已经有几个基因的突变与风险增加相关,例如脑源性神经营养因子(BDNF)。海马体有重要的解剖细分,脆弱的 CA3 区域的锥体神经元在慢性应激后会发生显著重塑,但它们独特可塑性的机制仍不清楚。本研究使用 CA3 特异性增强型绿色荧光蛋白(EGFP)报告基因融合到 L10a 大亚基(EGFPL10a),对该细胞群体的体内翻译 mRNA 进行了应激诱导变化的特征描述。分离多核糖体结合的 mRNA 后进行 RNA 测序,可以对压力后细胞类型特异性、全基因组的翻译变化进行特征描述。数据表明,急性和慢性应激会产生独特的翻译谱,并且动物的应激史可以改变 CA3 神经元的未来反应性。然后,将 CA3 特异性 EGFPL10a 小鼠与应激易感性 BDNF Val66Met 小鼠系杂交,以描述已知的遗传易感性如何改变 CA3 神经元的基线翻译谱和对压力的反应性。携带 Met 等位基因的小鼠不仅表现出与离子通道功能和细胞骨架调节相关基因的基线翻译水平明显不同,而且还激活了与野生型小鼠高度不同的应激反应谱。对神经可塑性机制中涉及的基因(如 NMDA 和 AMPA 亚基和 BDNF 途径)进行更仔细的检查,揭示了野生型小鼠如何在应激下上调许多这些基因,但 Met 等位基因携带小鼠未能如此。这些图谱提供了在遗传同质的海马神经元群体中应激诱导变化的路线图,并说明了基因-环境相互作用对这些细胞翻译谱的深远影响。