Yin Wei, Grimaud Alexis, Lepoivre Florent, Yang Chunzhen, Tarascon Jean Marie
Chimie du Solide et de l'Energie, UMR 8260, Collège de France , 75231, Paris Cedex 05, France.
Sorbonne Universités - UPMC Université Paris 06 , F-75005 Paris, France.
J Phys Chem Lett. 2017 Jan 5;8(1):214-222. doi: 10.1021/acs.jpclett.6b02610. Epub 2016 Dec 19.
The Li-O/CO battery with high capacity has recently been proposed as a new protocol to convert CO. However, the fundamental mechanism for the reaction still remains hazy. Here, we investigated the discharge processes of Li-O/CO (70%/30%) batteries in two solvents, dimethyl sulfoxide (DMSO) and 1,2-dimethoxyethane (DME). During discharge, both solvents initially show the reduction of oxygen. However, afterward, the solvent affects the reaction pathways of superoxide species by solvating Li with different strength, depending on the so-called donor number. More precisely, the initial formation of CO is favored in DMSO at the expense of lithium superoxide formation that we observed in DME. Despite the different intermediate processes, X-ray diffraction showed that LiCO was the final discharge product in both solvents. Moreover, we observed that CO cannot be reduced within the electrochemical stability window of DMSO and DME.
最近,具有高容量的锂-氧/二氧化碳电池被提议作为一种转化二氧化碳的新方案。然而,该反应的基本机制仍然模糊不清。在此,我们研究了锂-氧/二氧化碳(70%/30%)电池在两种溶剂,即二甲基亚砜(DMSO)和1,2-二甲氧基乙烷(DME)中的放电过程。在放电过程中,两种溶剂最初都表现出氧的还原。然而,随后,溶剂通过以不同强度溶剂化锂来影响超氧物种的反应途径,这取决于所谓的给体数。更确切地说,在DMSO中有利于一氧化碳的初始形成,代价是我们在DME中观察到的超氧化锂的形成。尽管中间过程不同,但X射线衍射表明碳酸锂是两种溶剂中的最终放电产物。此外,我们观察到在DMSO和DME的电化学稳定性窗口内一氧化碳无法被还原。