Zhao Zhiwei, Su Yuwei, Peng Zhangquan
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China.
University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China.
J Phys Chem Lett. 2019 Feb 7;10(3):322-328. doi: 10.1021/acs.jpclett.8b03272. Epub 2019 Jan 9.
A trace-O-assisted aprotic Li-CO battery represents a promising approach for CO recycling. However, cathode passivation and large overpotential are frequently observed for current Li-CO batteries because of the insolubility and nonconductivity of the discharge product of lithium carbonate (LiCO). Toward maximizing the energy capabilities of the Li-CO electrochemistry, it is crucially important to have a fundamental understanding of the LiCO formation mechanism in Li-CO batteries. In this report, the discharge reaction of a trace-O-assisted Li-CO battery has been interrogated with in situ surface-enhanced Raman spectroscopy. It was found that in high-donor-number (DN) solvents LiCO formation proceeds primarily via an "electrochemical solution route", with peroxodicarbonate (CO) as the key intermediate, whereas in low-DN solvents LiCO forms via a chemical reaction of LiO and CO on the cathode surface, namely, a "chemical surface route". It is notable that during discharge the trace-O acts as a "pseudo-catalyst" to activate CO in high-DN solvents but not in low-DN solvents. The mechanistic study presented here will assist us in tailor-designing better electrolyte systems and enable more energetic electrochemistry operation far away from the poison of LiCO.
痕量氧辅助的非质子锂-二氧化碳电池是实现二氧化碳循环利用的一种很有前景的方法。然而,由于碳酸锂(Li₂CO₃)放电产物的不溶性和非导电性,目前的锂-二氧化碳电池经常出现阴极钝化和较大过电位的问题。为了最大限度地提高锂-二氧化碳电化学的能量性能,深入了解锂-二氧化碳电池中Li₂CO₃的形成机制至关重要。在本报告中,利用原位表面增强拉曼光谱对痕量氧辅助的锂-二氧化碳电池的放电反应进行了研究。研究发现,在高给体数(DN)溶剂中,Li₂CO₃的形成主要通过“电化学溶液途径”进行,过氧二碳酸根(CO₄²⁻)是关键中间体,而在低DN溶剂中,Li₂CO₃通过LiO₂与CO₂在阴极表面的化学反应形成,即“化学表面途径”。值得注意的是,在放电过程中,痕量氧在高DN溶剂中作为“假催化剂”激活CO₂,但在低DN溶剂中则不然。本文提出的机理研究将有助于我们定制设计更好的电解质体系,并实现远离Li₂CO₃毒害的更高效电化学操作。