Suppr超能文献

周期轨道的等稳约化

Isostable reduction of periodic orbits.

作者信息

Wilson Dan, Moehlis Jeff

机构信息

Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.

出版信息

Phys Rev E. 2016 Nov;94(5-1):052213. doi: 10.1103/PhysRevE.94.052213. Epub 2016 Nov 14.

Abstract

The well-established method of phase reduction neglects information about a limit-cycle oscillator's approach towards its periodic orbit. Consequently, phase reduction suffers in practicality unless the magnitude of the Floquet multipliers of the underlying limit cycle are small in magnitude. By defining isostable coordinates of a periodic orbit, we present an augmentation to classical phase reduction which obviates this restriction on the Floquet multipliers. This framework allows for the study and understanding of periodic dynamics for which standard phase reduction alone is inadequate. Most notably, isostable reduction allows for a convenient and self-contained characterization of the dynamics near unstable periodic orbits.

摘要

成熟的相位约化方法忽略了关于极限环振荡器趋向其周期轨道的信息。因此,除非基础极限环的弗洛凯乘数的大小很小,否则相位约化在实际应用中会受到影响。通过定义周期轨道的等稳坐标,我们对经典相位约化进行了扩展,消除了对弗洛凯乘数的这一限制。该框架允许研究和理解仅靠标准相位约化不足以处理的周期动力学。最值得注意的是,等稳约化允许对不稳定周期轨道附近的动力学进行方便且自成体系的表征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验