Suppr超能文献

混沌系统中同宿轨道和周期轨道作用的精确关系。

Exact relations between homoclinic and periodic orbit actions in chaotic systems.

机构信息

Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164-2814, USA.

出版信息

Phys Rev E. 2018 Feb;97(2-1):022216. doi: 10.1103/PhysRevE.97.022216.

Abstract

Homoclinic and unstable periodic orbits in chaotic systems play central roles in various semiclassical sum rules. The interferences between terms are governed by the action functions and Maslov indices. In this article, we identify geometric relations between homoclinic and unstable periodic orbits, and derive exact formulas expressing the periodic orbit classical actions in terms of corresponding homoclinic orbit actions plus certain phase space areas. The exact relations provide a basis for approximations of the periodic orbit actions as action differences between homoclinic orbits with well-estimated errors. This enables an explicit study of relations between periodic orbits, which results in an analytic expression for the action differences between long periodic orbits and their shadowing decomposed orbits in the cycle expansion.

摘要

在混沌系统中,同宿和不稳定周期轨道在各种半经典求和规则中起着核心作用。项之间的干涉由作用函数和 Maslov 指数控制。在本文中,我们确定了同宿和不稳定周期轨道之间的几何关系,并推导出了以相应的同宿轨道作用加上某些相空间区域来表示周期轨道经典作用的精确公式。精确关系为将周期轨道作用近似为同宿轨道作用之间的作用差提供了基础,并且误差估计良好。这使得可以对周期轨道之间的关系进行显式研究,从而得到了在循环展开中长周期轨道与其阴影分解轨道之间的作用差的解析表达式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验