Suppr超能文献

具有速度反转的自驱动棒的中尺度图案形成

Mesoscale pattern formation of self-propelled rods with velocity reversal.

作者信息

Großmann Robert, Peruani Fernando, Bär Markus

机构信息

Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, D-10587 Berlin, Germany.

Laboratoire J. A. Dieudonné, Université de Nice Sophia Antipolis, UMR 7351 CNRS, Parc Valrose, F-06108 Nice Cedex 02, France.

出版信息

Phys Rev E. 2016 Nov;94(5-1):050602. doi: 10.1103/PhysRevE.94.050602. Epub 2016 Nov 22.

Abstract

We study self-propelled particles with velocity reversal interacting by uniaxial (nematic) alignment within a coarse-grained hydrodynamic theory. Combining analytical and numerical continuation techniques, we show that the physics of this active system is essentially controlled by the reversal frequency. In particular, we find that elongated, high-density, ordered patterns, called bands, emerge via subcritical bifurcations from spatially homogeneous states. Our analysis reveals further that the interaction of bands is weakly attractive and, consequently, bands fuse upon collision in analogy with nonequilibrium nucleation processes. Moreover, we demonstrate that a renormalized positive line tension can be assigned to stable bands below a critical reversal rate, beyond which they are transversally unstable. In addition, we discuss the kinetic roughening of bands as well as their nonlinear dynamics close to the threshold of transversal instability. Altogether, the reduction of the multiparticle system onto the dynamics of bands provides a unified framework to understand the emergence and stability of nonequilibrium patterns in this self-propelled particle system. In this regard, our results constitute a proof of principle in favor of the hypothesis in microbiology that velocity reversal of gliding rod-shaped bacteria regulates the transitions between various self-organized patterns observed during the bacterial life cycle.

摘要

我们在粗粒化流体动力学理论框架下,研究了通过单轴(向列相)排列相互作用且具有速度反转的自驱动粒子。结合解析和数值延拓技术,我们表明该活性系统的物理本质上由反转频率控制。特别地,我们发现被称为条带的细长、高密度、有序模式通过从空间均匀态的亚临界分岔出现。我们的分析进一步揭示,条带间的相互作用是弱吸引的,因此,条带在碰撞时会融合,类似于非平衡成核过程。此外,我们证明在临界反转速率以下,可以为稳定的条带赋予重整化的正线张力,超过该速率条带会横向不稳定。另外,我们讨论了条带的动力学粗糙化以及它们在接近横向不稳定阈值时的非线性动力学。总之,将多粒子系统简化为条带动力学提供了一个统一框架,以理解这个自驱动粒子系统中非平衡模式的出现和稳定性。在这方面,我们的结果构成了一个原理证明,支持微生物学中的假设,即滑行杆状细菌的速度反转调节细菌生命周期中观察到的各种自组织模式之间的转变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验