Laboratoire J.A. Dieudonné, Université Côte d'Azur, UMR 7351 CNRS, 06108, Nice, France.
Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam, Germany.
Nat Commun. 2020 Oct 23;11(1):5365. doi: 10.1038/s41467-020-18978-5.
Whereas self-propelled hard discs undergo motility-induced phase separation, self-propelled rods exhibit a variety of nonequilibrium phenomena, including clustering, collective motion, and spatio-temporal chaos. In this work, we present a theoretical framework representing active particles by continuum fields. This concept combines the simplicity of alignment-based models, enabling analytical studies, and realistic models that incorporate the shape of self-propelled objects explicitly. By varying particle shape from circular to ellipsoidal, we show how nonequilibrium stresses acting among self-propelled rods destabilize motility-induced phase separation and facilitate orientational ordering, thereby connecting the realms of scalar and vectorial active matter. Though the interaction potential is strictly apolar, both, polar and nematic order may emerge and even coexist. Accordingly, the symmetry of ordered states is a dynamical property in active matter. The presented framework may represent various systems including bacterial colonies, cytoskeletal extracts, or shaken granular media.
虽然自推进硬盘会经历运动诱导的相分离,但自推进棒会表现出多种非平衡现象,包括聚集、集体运动和时空混沌。在这项工作中,我们提出了一个用连续场来表示活性粒子的理论框架。这个概念结合了基于对齐的模型的简单性,使其能够进行分析研究,以及包含自推进物体形状的现实模型。通过将粒子形状从圆形变为椭圆形,我们展示了自推进棒之间的非平衡应力如何使运动诱导的相分离失稳,并促进取向有序,从而将标量和矢量活性物质的领域联系起来。尽管相互作用势是严格的非极性的,但极性和向列相都可能出现,甚至共存。因此,有序态的对称性是活性物质中的一个动态特性。所提出的框架可以表示各种系统,包括细菌菌落、细胞骨架提取物或摇晃的颗粒介质。