Suppr超能文献

一种用于医学研究中动态数据聚合的多智能体系统。

A Multiagent System for Dynamic Data Aggregation in Medical Research.

作者信息

Dubovitskaya Alevtina, Urovi Visara, Barba Imanol, Aberer Karl, Schumacher Michael Ignaz

机构信息

Applied Intelligent Systems Laboratory, HES-SO VS, Sierre, Switzerland; Distributed Information Systems Laboratory, EPFL, Lausanne, Switzerland.

Accounting and Information Management, Maastricht University, Maastricht, Netherlands.

出版信息

Biomed Res Int. 2016;2016:9027457. doi: 10.1155/2016/9027457. Epub 2016 Nov 16.

Abstract

The collection of medical data for research purposes is a challenging and long-lasting process. In an effort to accelerate and facilitate this process we propose a new framework for dynamic aggregation of medical data from distributed sources. We use agent-based coordination between medical and research institutions. Our system employs principles of peer-to-peer network organization and coordination models to search over already constructed distributed databases and to identify the potential contributors when a new database has to be built. Our framework takes into account both the requirements of a research study and current data availability. This leads to better definition of database characteristics such as schema, content, and privacy parameters. We show that this approach enables a more efficient way to collect data for medical research.

摘要

出于研究目的收集医学数据是一个具有挑战性且持久的过程。为了加速并促进这一过程,我们提出了一个用于动态聚合来自分布式源的医学数据的新框架。我们使用医学机构与研究机构之间基于代理的协调方式。我们的系统采用对等网络组织和协调模型的原则,在已构建的分布式数据库中进行搜索,并在需要构建新数据库时识别潜在的贡献者。我们的框架既考虑了研究的要求,也考虑了当前的数据可用性。这使得能够更好地定义数据库特征,如图式、内容和隐私参数。我们表明,这种方法能够以更高效的方式为医学研究收集数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c37/5128729/19dfc4c7a4a6/BMRI2016-9027457.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验